
1

Code Generation on
embedded processors

11. 12. 2004.
Eun Kyong Seo

12 November 2004 Embedded Software Synthesis �

Key Requirements

� Code quality in size and performance
� Chip area constraints
� Real time constraints
� Efficient power consumption

2

12 November 2004 Embedded Software Synthesis �

Simplified Design Flow

ProcessorSpecification

Task
Mapping

Compiler
Generation

Compilation

Final Design

Low PowerValidation

12 November 2004 Embedded Software Synthesis �

Architectural Features
Of Embedded Processors

� Designed for efficiency
� Huge variety of processors
� Harvard architecture
� Heterogeneous register sets
� Limited instruction-level parallelism

or VLIW ISA
� Different operation modes

(saturating arithmetic, fixed point)

3

12 November 2004 Embedded Software Synthesis �

Processor classification

None
(General purpose

architecture)

for DSP Domain-Specific

Processor
available as

package

Core
(CAD cell)

Application specific

Possible
(ASIP)

Off-the-shelf

ASIP

CORE
DSP

ASSP

12 November 2004 Embedded Software Synthesis �

Requirements for compilers

� Demand for compact code
� Demand for extremely fast code

� Prior to short compilation times

� Need for high dependability
� Constraints for real-time response

� Smarter compiler to calculate the speed of the code

� Support for DSP algorithm
� Support for DSP architectures

4

12 November 2004 Embedded Software Synthesis �

Compiler Structure

Compiler frontend

Code selection
Register allocation

Scheduling

Assembly level
optimisations

C-source

Machine-
specific

optimisations

Object Code

Intermediate
Representation(IR)

Source level
optimisations

12 November 2004 Embedded Software Synthesis �

Source level optimization (cont’)

� Standard optimizations (also at IR level)

� Constant folding
� Common subexpression elimination
� Jump optimization

� Address code transformation
� Simplification of array index expressions for

memory-intensive applications

5

12 November 2004 Embedded Software Synthesis �

Source level optimization (cont’)

� Loop transformations
� Loop unrolling
� Loop folding, Software pipelining

� Function inlining
� To reduce the calling overhead, replacing

function call with body

12 November 2004 Embedded Software Synthesis 	

Optimized Instruction Set Mapping

� Machine-specific features
� Makes efficient code generation difficult

� Special-purpose registers
� Complex instruction patterns
� Inter-instruction constraints

� Tree pattern matching
� Phase-coupled code generation
� Multimedia instruction sets

6

12 November 2004 Embedded Software Synthesis 		

Optimized instruction set mapping

� Tree pattern matching
� Instruction set mapping or code selection
� Nodes: variables, constants & operations
� Edges: data dependencies
� Minimum cover of a DFTs (data flow trees)

12 November 2004 Embedded Software Synthesis 	�

Optimized instruction set mapping

� Phase-coupled code generation
� Code Selection, Register allocation & instruction

scheduling (NP hard)

� Multimedia instruction sets
� VLIW/RISC-like architecture
� SIMD

� Faster execution on short values
� Exploited as compiler-known functions
� Non-portable � special language constructs or libraries

needed

7

12 November 2004 Embedded Software Synthesis 	�

Assembly level optimization

� Memory access optimization
� Two memory banks accessible in parallel
� Partitioning based on pre-scheduled

assembly code
� Memory interface & fast access mode,

processor pipeline timing information

� Address code optimization
� Dedicated AGU (Address Generation Unit)

12 November 2004 Embedded Software Synthesis 	�

Assembly level optimization

� Instruction scheduling
� Local scheduling (code compaction)

algorithms limited to a basic block
� Global techniques for global critical paths

with larger code size

8

12 November 2004 Embedded Software Synthesis 	�

Retargetability

Traditional vs. Retargetable compiler

Source program P Source program P Model of processor Q

Machine code for
executing P on Q

Machine code for
executing P on Q

Compiler
for processor Q Retargetable compiler

12 November 2004 Embedded Software Synthesis 	�

Retargetability

� Generates code for different target processors,
based on external (e.g. HDL) machine models.

� Application area
� Parameterizable ASIPs

� To explore different configurations of a given ASIP

� Architecture exploration at system level
� To estimate the performance of different target processors

for a given application early

� Portability, target independence

9

12 November 2004 Embedded Software Synthesis 	�

Retargetability - RECORD

Instruction set
extraction

ISE output IBURG
format conversion

Pattern Matcher

Source
program (DFL)

optimizations

Executable
Code

Processor Model
HDL

Frontend

IBURG pattern
matcher generator

12 November 2004 Embedded Software Synthesis 	�

Retargetability - Flexware

Insulin
Instruction-Set

Simulation

Application
Software(C)

CodeSyn

Retargetable
Code

Generation

Machine Code

Insulin Graphic
Interface

Insulin Model

VHDL

Commercial Cores
Reconfigurable ASIP
Instruction-Set Spec

10

12 November 2004 Embedded Software Synthesis 	�

Retargetability - CHESS

System Description
(C, DFL)

Code Assembly

Processor
description (nML)

CDFG ISG

Library

Machine
code

Scheduling

Bit Alignment

Register Allocation

Code Selection

Flow Graph
Refinement

Code generation

Statistics

12 November 2004 Embedded Software Synthesis �

Low Power

� May be contrary to code size and
performance

� Instruction selection & scheduling of
machine code

� Alternative instruction, data encoding and
power-efficient on-chip memories

11

12 November 2004 Embedded Software Synthesis �	

Processor Classes (con’t)

� Microcontrollers
� Control-intensive applications
� CISC architecture
� High code density
� Limited computational resources

12 November 2004 Embedded Software Synthesis ��

Processor Classes (con’t)

� RISC processors
� Load-store architecture
� Large file of general-purpose registers
� Global register allocation technique

12

12 November 2004 Embedded Software Synthesis ��

Processor Classes (cont’)

� DSP processors
� Arithmetic intensive applications
� Fast execution of DSP routines by

dedicated HW support
(e.g. multipliers and address generation
units)

� DSP-specific data path architectures

12 November 2004 Embedded Software Synthesis ��

Processor Classes (cont’)

� Application-specific processors
� A compromise between off-the-shelf

processors and ASICs
� Application-specific data paths
� retargetable compilers

13

12 November 2004 Embedded Software Synthesis ��

Processor Classes

� Multimedia processors
� Recent mixture of RISC and DSP

processors
� VLIW programming paradigm
� Very high performance
� Low code density and high power

consumption
� Support for vectorized (SIMD) instructions.

12 November 2004 Embedded Software Synthesis ��

Cores for reuse

Timing characteristics
provided

Full timing verification
after synthesis

Timing Issues

HighLowOptimization

LowHighDesign Time

NoYesPortability

Layout
Datasheet

Synthesizable
Behavioral

Models

Hard coresSoft cores

14

12 November 2004 Embedded Software Synthesis ��

Frontend issues

� Lexical, syntactical, and semantical
analysis of source programs,
IR generation

� Machine independence

