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Key Requirements

� Code quality in size and performance
� Chip area constraints
� Real time constraints
� Efficient power consumption
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Architectural Features 
Of Embedded Processors

� Designed for efficiency
� Huge variety of processors
� Harvard architecture
� Heterogeneous register sets
� Limited instruction-level parallelism       

or VLIW ISA
� Different operation modes      

(saturating arithmetic, fixed point)
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Requirements for compilers

� Demand for compact code
� Demand for extremely fast code

� Prior to short compilation times

� Need for high dependability
� Constraints for real-time response

� Smarter compiler to calculate the speed of the code

� Support for DSP algorithm
� Support for DSP architectures
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Compiler Structure
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Source level optimization (cont’)

� Standard optimizations (also at IR level)

� Constant folding
� Common subexpression elimination
� Jump optimization

� Address code transformation
� Simplification of array index expressions for 

memory-intensive applications
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Source level optimization (cont’)

� Loop transformations
� Loop unrolling
� Loop folding, Software pipelining

� Function inlining
� To reduce the calling overhead, replacing 

function call with body
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Optimized Instruction Set Mapping

� Machine-specific features
� Makes efficient code generation difficult

� Special-purpose registers
� Complex instruction patterns
� Inter-instruction constraints

� Tree pattern matching
� Phase-coupled code generation
� Multimedia instruction sets
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Optimized instruction set mapping

� Tree pattern matching
� Instruction set mapping or code selection
� Nodes: variables, constants & operations
� Edges: data dependencies
� Minimum cover of a DFTs (data flow trees)

12 November 2004 Embedded Software Synthesis 	�

Optimized instruction set mapping

� Phase-coupled code generation
� Code Selection, Register allocation & instruction 

scheduling (NP hard)

� Multimedia instruction sets
� VLIW/RISC-like architecture
� SIMD

� Faster execution on short values
� Exploited as compiler-known functions
� Non-portable � special language constructs or libraries 

needed
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Assembly level optimization

� Memory access optimization
� Two memory banks accessible in parallel
� Partitioning based on pre-scheduled 

assembly code
� Memory interface & fast access mode, 

processor pipeline timing information

� Address code optimization
� Dedicated AGU (Address Generation Unit)
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Assembly level optimization

� Instruction scheduling
� Local scheduling (code compaction) 

algorithms limited to a basic block
� Global techniques for global critical paths 

with larger code size
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Retargetability

Traditional vs. Retargetable compiler

Source program P Source program P Model of processor Q

Machine code for
executing P on Q

Machine code for
executing P on Q

Compiler
for processor Q Retargetable compiler
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Retargetability

� Generates code for different target processors, 
based on external (e.g. HDL) machine models. 

� Application area
� Parameterizable ASIPs

� To explore different configurations of a given ASIP

� Architecture exploration at system level
� To estimate the performance of different target processors 

for a given application early

� Portability, target independence
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Retargetability - RECORD
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Retargetability - Flexware
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Low Power

� May be contrary to code size and 
performance

� Instruction selection & scheduling of 
machine code

� Alternative instruction, data encoding and 
power-efficient on-chip memories
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Processor Classes (con’t)

� Microcontrollers
� Control-intensive applications 
� CISC architecture 
� High code density
� Limited computational resources
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Processor Classes (con’t)

� RISC processors
� Load-store architecture
� Large file of general-purpose registers 
� Global register allocation technique
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Processor Classes (cont’)

� DSP processors 
� Arithmetic intensive applications
� Fast execution of DSP routines by 

dedicated HW support 
(e.g. multipliers and address generation 
units) 

� DSP-specific data path architectures
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Processor Classes (cont’)

� Application-specific processors 
� A compromise between off-the-shelf 

processors and ASICs
� Application-specific data paths
� retargetable compilers
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Processor Classes

� Multimedia processors
� Recent mixture of RISC and DSP 

processors
� VLIW programming paradigm
� Very high performance
� Low code density and high power 

consumption 
� Support for vectorized (SIMD) instructions. 
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Cores for reuse
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Full timing verification 
after synthesis
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Frontend issues

� Lexical, syntactical, and semantical
analysis of source programs, 
IR generation

� Machine independence


