

Presentation Flow Need for Power Management Basics of Power Consumption Static Power Reduction Techniques Dynamic Power Reduction Techniques

	Stror	ngARM SA-1100	
State	Performance	Hardware Latency	Electrical Power
Sleep	Interrupts are detected and can awake the processor.	Entering sleep: 150 µs Exiting sleep: 10-157 ms	7.18 mW
Idle	No instructions are executed; interrupts put the processor in the run state.	Entering idle: < 10 cycles Exiting idle: < 10 cycles	55.5 mW at 59 MHz 81.9 mW at 133 MHz 95.5 mW at 192 MHz
Run	Performance is a function of processor frequency.	NA	Load Dependent

Dynamic Power Reduction Techniques • Algorithm Selection & Switching Algorithm Selected has the biggest effect on the efficiency of the power management • Switching to a different computation algorithm. Audio Quality can be traded off with the power consumption Another example is the Half-Rate Vocoder in GSM Cell phones, that is used when the networks gets clogged – it is also used when the cell phone is low on battery. Adaptive Scheduling: Based on statistical data, scheduling mechanism altered. • Use of fixed scheduling rather than priority based helps in lowering power context switches. Cache usage also optimized. Data Path Precision: Most Embedded systems are data path intensive. Lowered precision / fixed precision on data path reduces overhead on the arithmetic engines & instruction scheduling. ٠ Instruction Set Design ٠ Coding for Bus Transactions ٠ Feature Reduction . 12

Thank You!	
	1