A packet scheduling bucket based on
* BRFQ and FQ algorithm in SpecC

Hsien-Ching Liao
hliao@uci.edu

Electrical Engineering and Computer Science
University of California, Irvine

i Overview:

= What's packet scheduling bucket?

= BRFQ and FQ algorithms.

= Designed strategies in SpecC language.
= SpecC model of the bucket.

= Implementation in SpecC.

= Demo.

= Comparison between BRFQ and FQ
algorithms.

= Lessons

i What's packet scheduling bucket?
4

é
4
é

-

é
4

Leaky
Bucket

o

Network

From: EECS 248 Computer Networks Prof. Tatsuya Suda '

i What's packet scheduling bucket?

= It's usually a part of a router.

= In order to provide needed QoS, we use
packet scheduling algorithms to decide the
output sequence of incoming packets in a
bucket.

= BRFQ and FQ algorithms are two of them.

i Scheduling algorithms

= Round Robin
= Fair Queuing
= Bit Round Fair Queuing

i Round Robin
= Round Robin

= Segregate traffic into separate queues by flow (or
class)

= Serve queues in sequence and loop

Flow 1

Round-robin
service

From: EECS 248 Computer Networks Prof. Flow 4
Tatsuya Suda ow

i Fair Queuing (FQ)

= Fair Queuing (FQ)
= Based on round robin
= Explicitly segregate traffic based on flows

= One packet at a time from each queue

= Do not account for the size of individual
packets

From: EECS 248 Computer Networks Prof. Tatsuya Suda '

i BRFQ (Bit round fair queuing)

= BRFQ (Bit Round Fair Queuing)

= Fair Queuing (FQ) with account for the size
of individual packets

From: EECS 248 Computer Networks Prof. Tatsuya Suda '

BRFQ (Bit round fair queuing)

= Suppose clock ticks each time a bit is transmitted
= Let P denote the length of packet /
= Let S, denote the time when start to transmit packet /
= Let £ denote the time when finish transmitting packet /
= F=5+F
= When does a router start transmitting packet i ?
= if packet /-1 is being served, then immediately after its last

bit was transmitted (F.,)

= if no current packets for this flow, then immediately when

packet /arrives (call this arrival time A)

« Thus: F,= MAX(F_,, A) + P,

[From: EECS 248 Computer Networks Prof. Tatsuya Suda '

BRFQ (Bit round fair queuing)

= For n active flows

Assume a bit from each flow can be transmitted
simultaneously at 1/n-th the link rate

The clock ticks each time a bit from all n flows is transmitted
Calculate Fi,j for each packet i that arrives on each flow j

Fi,j = MAX (Fi —1,j, Ai,j) + Pi,j

Treat all Fi,j’'s as timestamps

Next packet to transmit is one with lowest timestamp

From: EECS 248 Computer Networks Prof. Tatsuya Suda '

BRFQ (Bit round fair queuing) Example:

Flow 1 Flow 2 Output

10 bit packet E=10
Flow 2: 1
F=8
F=5
5 bit 3 bit

R

| | | | | | .
» Virtual clock
I T 11
0 2 3 4 5 6 7 8 9 10 11 12 13
Determining Timestamps:
2 2 2 2 2 2 2 2
1 1 41y 1141 g1 g2 2
I I I I I A .
» Virtual clock
1T T 11T 1T 11
o 1 2 3 4 5 6 7 8 9 10 11 12 13

From: EECS 248 Computer Networks Prof. Tatsuya Suda '

i Designed strategies

= Figure out inputs and outputs.
= SpecC models

- Behaviors and channels

- Computations in behaviors
- Coding and Testing

* SpecC model of the bucket.

[w3
Flow2 Output packets 1
Flow1l

* Implementation in SpecC.

= Flowl, Flow2, Flow3 input testing set of
packets to R1, R2, R3 through Channels.

= Stack is @ memory to store input packet.

= BRFQ / FQ fetch packets from the Stack then
schedule packet.

= BRFQ / FQ output packets.

i Implementation in SpecC.

= Testing input packets:

Name Arriving time Flow Size (bit) Time Stamps
(BRFQ)

A 0 1 6 6

B 3 2 10 13
C 8 1 2 10
D 9 3 6 15
E 12 1 10 22
F 17 2 4 21

Assume that bucket output 1 bit/s

i Demo.

= Output result:
= FQ:A,B,D,C FE
= BRFQ: A, C,B,D, F, E

i Demo.

= Demo on Linux Server.
= FQ.exe
= BRFQ.exe

i Comparison of BRFQ and FQ algorithms.

= FQ is not truly “Fair”. It's just “fair in
number of packets”, Not fair in time
processing.

= BRFQ considers “Time” & “Processing
count”, is more fair than FQ.

i Lessons

= SpecC provides a powerful concurrent
environment which meets users’ need to
design many systems.

= Easily to familiarize with if you had
experience in C language.

* Thank you for your listening.

|
If you have any further questions, please feel free to contact :
hliao@uci.edu

