

A packet scheduling bucket based on BRFQ and FQ algorithm in SpecC

Hsien-Ching Liao hliao@uci.edu

Electrical Engineering and Computer Science University of California, Irvine

Overview:

- What's packet scheduling bucket?
- BRFQ and FQ algorithms.
- Designed strategies in SpecC language.
- SpecC model of the bucket.
- Implementation in SpecC.
- Demo.
- Comparison between BRFQ and FQ algorithms.
- Lessons

What's packet scheduling bucket?

- It's usually a part of a router.
- In order to provide needed QoS, we use packet scheduling algorithms to decide the output sequence of incoming packets in a bucket.
- BRFQ and FQ algorithms are two of them.

Scheduling algorithms

- Round Robin
- Fair Queuing
- Bit Round Fair Queuing

Round Robin

- Round Robin
 - Segregate traffic into separate queues by flow (or class)
 - Serve queues in sequence and loop

From: EECS 248 Computer Networks Prof. Tatsuya Suda

Fair Queuing (FQ)

- Fair Queuing (FQ)
 - Based on round robin
 - Explicitly segregate traffic based on flows
 - One packet at a time from each queue
 - Do not account for the size of individual packets

From: EECS 248 Computer Networks Prof. Tatsuya Suda

BRFQ (Bit round fair queuing)

- BRFQ (Bit Round Fair Queuing)
 - Fair Queuing (FQ) with account for the size of individual packets

From: EECS 248 Computer Networks Prof. Tatsuya Suda

BRFQ (Bit round fair queuing)

- Suppose clock ticks each time a bit is transmitted
- Let P_i denote the length of packet i
- Let S_i denote the time when start to transmit packet i
- Let F_i denote the time when finish transmitting packet i
- $F_i = S_i + P_i$
- When does a router start transmitting packet i?
 - if packet i-1 is being served, then immediately after its last bit was transmitted (F_{i-1})
 - if no current packets for this flow, then immediately when packet i arrives (call this arrival time A_i)
- Thus: $F_i = MAX(F_{i-1}, A_i) + P_i$

From: EECS 248 Computer Networks Prof. Tatsuya Suda

BRFQ (Bit round fair queuing)

- For n active flows
 - Assume a bit from each flow can be transmitted simultaneously at 1/n-th the link rate
 - The clock ticks each time a bit from all n flows is transmitted
 - Calculate Fi,j for each packet i that arrives on each flow j
 - Fi,j = MAX (Fi − 1,j, Ai,j) + Pi,j
 - Treat all Fi,j's as timestamps
 - Next packet to transmit is one with lowest timestamp

From: EECS 248 Computer Networks Prof. Tatsuya Suda

Designed strategies

- Figure out inputs and outputs.
- SpecC models
 - Behaviors and channels
 - Computations in behaviors
- → Coding and Testing

Implementation in SpecC.

- Flow1, Flow2, Flow3 input testing set of packets to R1, R2, R3 through Channels.
- Stack is a memory to store input packet.
- BRFQ / FQ fetch packets from the Stack then schedule packet.
- BRFQ / FQ output packets.

Implementation in SpecC.

Testing input packets:

Name	Arriving time	Flow	Size (bit)	Time Stamps (BRFQ)
Α	0	1	6	6
В	3	2	10	13
С	8	1	2	10
D	9	3	6	15
Е	12	1	10	22
F	17	2	4	21

Assume that bucket output 1 bit/s

Demo.

- Output result:
- FQ: A , B, D, C, F, E
- BRFQ: A, C, B, D, F, E

Demo.

- Demo on Linux Server.
- FQ.exe
- BRFQ.exe

Comparison of BRFQ and FQ algorithms.

- FQ is not truly "Fair". It's just "fair in number of packets", Not fair in time processing.
- BRFQ considers "Time" & "Processing count", is more fair than FQ.

Lessons

- SpecC provides a powerful concurrent environment which meets users' need to design many systems.
- Easily to familiarize with if you had experience in C language.

Thank you for your listening.

If you have any further questions, please feel free to contact : hliao@uci.edu