
Tic-Tac-Toe
in SpecC
Trevor Harmon

Why Tic-Tac-Toe?

Simplicity! Easy to understand and implement

But not too trivial: Complexity can grow
if desired

Goal is to learn SpecC, not build fancy
software

You can play games while doing homework!

Tic-Tac-Toe in Hardware

Tic-Tac-Toe game board

Wires lead

to input

ports on

ASIC chip

Each square contains:

• Pushbutton

• Green LED (the Xs)

• Red LED (the Os)

Finding a Game Engine
Didn’t want to reinvent the wheel

Wanted to explore “pluggability” of SpecC

Plenty of open-source tic-tac-toe algorithms
available

Found two good ones:
 a Java applet by Arthur van Hoff
 “Ultra Tic-Tac-Toe”

Arthur van Hoff’s Engine
Available in every Java SDK as a demo;
license allows modification

Very simple (brain-damaged?); relies on
heuristics to choose next move

Good for quick implementation and testing

Required port from Java to SpecC
(surprisingly easy)

“Ultra Tic-Tac-Toe”
Open-source, highly configurable engine

Claims to be one of the fastest recursive
game-tree search algorithms available

Relies on alpha-beta pruning

First Steps to SpecC

Started with game engine API in ANSI C

Interface:

 void init();
 void newGame();
 void computerMove();
 bool humanMove(int row, int column);
 int getStatus();

Allows clean separation between game engine
and user interface

Behavioral Layout
Main

Stimulator Monitor
Tic-Tac-Toe

Game

Tic-Tac-Toe Game

Game
Controller

Game
Engine

Channel

Channel Channel

Problems Emerge
Want to port clean, modular ANSI C game
engine to SpecC

Easier said than done: Communication between
behaviors is through channels, not direct
function calls

SpecC provides concept of “interface”,
but this is for channels only

For further discussion: Best practices
for modular design in SpecC?

The Story So Far
Both tic-tac-toe game engines have
been ported to SpecC successfully

But engine is not modularized as a
behavior (hacked together inside
the channel)

Future work: cheesy lights and music

Allow predictive processing in the
background

Lessons Learned

Expertise with concurrent programming is
essential

Channels and interfaces are cool

But SpecC needs more high-level encapsulation
(e.g. explicit private methods in behaviors)

Be careful when porting from C to SpecC:
Your makefile might wipe you out!

Thank You

Image Sources

Tic-tac-toe game board: primitivestenciling.com

Arthur van Hoff: JavaWorld Magazine, 9/97

Alpha-beta: Hamed Ahmadi Nejad

SourceForge logo: sourceforge.net

Confused man: seykota.com

