
ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 1

ECE 298:
System-on-Chip Description and Modeling

Lecture 7

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 2

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 2

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 3

Lecture 7: Overview

�Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 4

Homework Assignment 3

• Discussion
– Task 1:

• Complete the MPEG-Audio Specification Model
such that the model ...

– ... contains all necessary code for the decoder
– ... contains a test bench with stimulator, DUT, and monitor
– ... compiles successfully with the SpecC compiler
– ... simulates successfully

– Task 2:
• For the decoder (DUT), create the behavioral hierarchy

necessary for a well-defined Specification Model
– Granularity: each function becomes a behavior
– Hierarchy: try to mimic the given functional hierarchy
– Concurrency: add explicit concurrency wherever possible
– Communication: use standard channels or local variables

Task 1a:
Task 1b:
Task 1c:
Task 1d:

Task 2a:
Task 2b:
Task 2c:
Task 2d:

STATUS

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 3

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 5

Lecture 7: Overview

• Homework Assignment 3
– Discussion

�Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 6

Homework Assignment 4

• Tasks
– Task 1:

• Choose design example:
– Option 1: MPEG-Audio Decoder (from previous homework)
– Option 2: GSM Vocoder (from SCE tutorial)

– Task 2:
• Explore possible system architectures with SCE

– Use different number and type of components

– Use different mapping
– Use different communication
– Estimate the performance and cost for each option

– Task 3:
• Generate the “best” system architecture for the design

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 4

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 7

Homework Assignment 4

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

11

22

44

33

66

55

77

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 8

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

�SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 5

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 9

Execution and Simulation Semantics

• Motivational Example 1
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

b1; b2;
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 10

Execution and Simulation Semantics

• Motivational Example 2
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 6

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 11

Execution and Simulation Semantics

• Motivational Example 3
– Given:

– What is the value of x after the execution of B?
– Answer: x = 5

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 12

Execution and Simulation Semantics

• Motivational Example 4
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

waitfor 10;
x = 6;

}
};

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 7

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 13

Execution and Simulation Semantics

• Motivational Example 5
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 14

Execution and Simulation Semantics

• Motivational Example 6
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 8

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 15

Execution and Simulation Semantics

• Motivational Example 7
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 16

Execution and Simulation Semantics

• Motivational Example 8
– Given:

– What is the value of x after the execution of B?
– Answer: B never terminates!

(the event is lost)

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

waitfor 10;
wait e;
x = 6;

}
};

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 9

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 17

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
�System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 18

System-level Language Semantics

• Concepts found in Embedded Systems
– Behavioral and structural hierarchy
– Concurrency

– Synchronization and communication

– Exception handling

– Timing

– State transitions

• System-level language must support these concepts
• Language semantics needed to define the meaning

– Semantics of execution (modeling, simulation, synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency
– Atomic operations

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 10

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 19

System-level Language Semantics

• Language semantics are needed for
– System designer (understanding)
– Tools

• Validation (compilation, simulation)
• Formal verification (equivalence, property checking)
• Synthesis

– Documentation and standardization

• Objective:
– Clearly define the execution semantics of the language

• Requirements and goals:
– completeness
– precision (no ambiguities)
– abstraction (no implementation details)
– formality (enable formal reasoning)
– simplicity (easy understanding)

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 20

System-level Language Semantics

• Example: SpecC language
• Documentation

– Language Reference Manual (LRM)

� set of rules written in English, thus not formal
– Abstract simulation algorithm

� set of valid implementations, but incomplete, not formal

• Reference implementation
– SpecC Reference Compiler and Simulator
� only one instance of a valid implementation

– Compliance test bench

� set of specific test cases, thus incomplete

• Formal execution semantics are needed!

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 11

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 21

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
�Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 22

Formal Execution Semantics

• Two examples of semantics definition:
1) Time-interval formalism

• formal definition of timed execution semantics
• sequentiality, concurrency, synchronization
• allows reasoning over execution order, dependencies

2) Abstract State Machines
• complete execution semantics of SpecC V1.0

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• influence on the definition of SpecC V2.0
• straightforward extension for SpecC V2.0
• comparable to ASM specifications of SystemC and

VHDL 93

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 12

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 23

Formal Execution Semantics (1)

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of par)
• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)
{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 24

• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time
– other statements execute in zero simulation time

behavior B
{ void main(void)
{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0 <= Tstart(a) < Tend(a) < 1
0 <= Tstart(w) < Tend(w) = 10

10 <= Tstart(b) < Tend(b) < 11

Formal Execution Semantics (1)

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 13

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 25

Formal Execution Semantics (1)

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f) < Tend(f) <= Tend(B)

behavior B2
{ void main(void)

{ d; e; f; }
};

behavior B1
{ void main(void)

{ a; b; c; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 26

• Atomicity
– Since there is no atomicity guaranteed, a safe

mechanism for mutual exclusion is necessary
– SpecC 2.0:

• A mutex is implicitly contained in each channel instance

• Each channel method implicitly acquires the mutex when it
starts execution and releases the mutex again when it
finishes

• An acquired mutex is also released at wait and waitfor
statements and will be re-acquired before execution
resumes

– This easily enables safe communication without
unnecessary restrictions to the implementation!

Formal Execution Semantics (1)

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 14

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 27

Formal Execution Semantics (1)

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <= Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d) < Tend(d) <= Tend(B)

behavior B2
{ void main(void)

{ c; notify e; d; }
};

behavior B1
{ void main(void)

{ a; wait e; b; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 28

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

�Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 15

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 29

• Abstract State Machine (ASM)
– aka. Evolving Algebras (Y. Gurevich, 1987)
– ASM semantics already exist for

• Prolog, Concurrent Prolog
• C, C++, Java
• VHDL, VHDL-AMS, SystemC

– ASM semantics for SpecC published at ISSS’02

• ASM components
– Sequence of algebras (functions over domains):

states
– Rules define updates of functions:

state transitions

Formal Execution Semantics (2)

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 30

Abstract State Machine (ASM)

f(0) := 42
f(0,0) := 0

Update SetUpdate Set

g = 0
f(0) = undef
f(0,0) = 23
f(0,1) = 6

g = 0
f(0) = 42
f(0,0) = 0
f(0,1) = 6

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0

Algebra A Algebra A‘

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0 U

pd
at

e
S

et
U

pd
at

e
S

et

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 16

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 31

ASM: SpecC Kernel Semantics

• Phase 1: at least one BEHAVIOR is running
• Phase 2: all BEHAVIORs are not running

ExecuteBehaviors

ProcessEvents

Check/ResetEvents

AdvanceTime

ProcessTimeouts

if events
if no events

exit

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 32

ASM: SpecC Behavior Semantics

running

waiting

completed

interrupted

last stmt

interrupt

wait
waitfor

fork

event
timeout

join

trap

last stmt

status(p) ∈ {running, waiting, interrupted, completed}
∈ BEHAVIOR:p

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running

• wait statement
if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)

endif;

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 17

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 33

ASM: SpecC Statement Semantics

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running
• wait statement

if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)

endif;

• notify statement
if Self executes <notifynotify(EventList(EventList))>
then ∀ e ∈ EventList: notified(e) := true,

programCounter(Self) := nextStmt(Self)
endif;

� �������	
����������
��������������������

����	��������	��������∃������������������	��∧ ��∈ ���������������

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 34

ASM: SpecC Summary

• Formal Semantics of SpecC Execution
• complete execution semantics of SpecC V1.0 by ASMs

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• can be easily extended to V2.0
• influenced the definition of SpecC V2.0
• SpecC ASM specification is comparable to

other ASM specifications
• SystemC
• VHDL 93

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 18

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 35

Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

�Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 36

Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– available in LRM (appendix), good for understanding
� set of valid implementations

� possibly incomplete!

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N
• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N
• Expiration of notified events means N is set to Ø

ECE298: SoC Description and Modeling Lecture 7

(c) 2004, R. Doemer 19

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 37

Simulation Semantics

• Abstract Simulation Algorithm for SpecC

��
������������∈��� !"��#��	����

���������������������$notify

%����∈��� !���&�'�

%����∈��� !���&�'�()�

wait

waitfor

��� !�*

����$�*

��� !�*

+,��������	
���������"��������
������∈&�'�()������� !

��� !�*

��,

�����

��

���

��

���

��

���

���

���

���

%����

��∈&�'��-������������������∈$������ !

��

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 38

Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– clearly specifies the simulation semantics
– is one valid implementation of the semantics

– other valid implementations may exist as well

