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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics
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Lecture 7: Overview

�Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics

ECE298: SoC Description and Modeling, Lecture 7 (c) 2004 R. Doemer 4

Homework Assignment 3

• Discussion
– Task 1:

• Complete the MPEG-Audio Specification Model
such that the model ...

– ... contains all necessary code for the decoder
– ... contains a test bench with stimulator, DUT, and monitor
– ... compiles successfully with the SpecC compiler
– ... simulates successfully

– Task 2:
• For the decoder (DUT), create the behavioral hierarchy

necessary for a well-defined Specification Model
– Granularity: each function becomes a behavior
– Hierarchy: try to mimic the given functional hierarchy
– Concurrency: add explicit concurrency wherever possible
– Communication: use standard channels or local variables

Task 1a:
Task 1b:
Task 1c:
Task 1d:

Task 2a:
Task 2b:
Task 2c:
Task 2d:

STATUS
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

�Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics
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Homework Assignment 4

• Tasks
– Task 1:

• Choose design example:
– Option 1: MPEG-Audio Decoder (from previous homework)
– Option 2: GSM Vocoder (from SCE tutorial)

– Task 2:
• Explore possible system architectures with SCE

– Use different number and type of components

– Use different mapping
– Use different communication
– Estimate the performance and cost for each option

– Task 3:
• Generate the “best” system architecture for the design
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Homework Assignment 4

Specification model
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IP

Estimation

Validation
Analysis
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Validation
Analysis

Compilation Simulation model

Implementation model

Software
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Interface
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Hardware
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

�SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
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Execution and Simulation Semantics

• Motivational Example 1
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

b1; b2;
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};
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Execution and Simulation Semantics

• Motivational Example 2
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};
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Execution and Simulation Semantics

• Motivational Example 3
– Given:

– What is the value of x after the execution of B?
– Answer: x = 5

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};
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Execution and Simulation Semantics

• Motivational Example 4
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

waitfor 10;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivational Example 5
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivational Example 6
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivational Example 7
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivational Example 8
– Given:

– What is the value of x after the execution of B?
– Answer: B never terminates!

(the event is lost)

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

waitfor 10;
wait e;
x = 6;

}
};
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
�System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics
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System-level Language Semantics

• Concepts found in Embedded Systems
– Behavioral and structural hierarchy
– Concurrency

– Synchronization and communication

– Exception handling

– Timing

– State transitions

• System-level language must support these concepts
• Language semantics needed to define the meaning

– Semantics of execution (modeling, simulation, synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency
– Atomic operations
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System-level Language Semantics

• Language semantics are needed for
– System designer (understanding)
– Tools

• Validation (compilation, simulation)
• Formal verification (equivalence, property checking)
• Synthesis

– Documentation and standardization

• Objective:
– Clearly define the execution semantics of the language

• Requirements and goals:
– completeness
– precision (no ambiguities)
– abstraction (no implementation details)
– formality (enable formal reasoning)
– simplicity (easy understanding)
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System-level Language Semantics

• Example: SpecC language
• Documentation

– Language Reference Manual (LRM)

� set of rules written in English, thus not formal
– Abstract simulation algorithm

� set of valid implementations, but incomplete, not formal

• Reference implementation
– SpecC Reference Compiler and Simulator
� only one instance of a valid implementation

– Compliance test bench

� set of specific test cases, thus incomplete

• Formal execution semantics are needed!
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
�Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

– Simulation Semantics
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Formal Execution Semantics

• Two examples of semantics definition:
1) Time-interval formalism

• formal definition of timed execution semantics
• sequentiality, concurrency, synchronization
• allows reasoning over execution order, dependencies

2) Abstract State Machines
• complete execution semantics of SpecC V1.0

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• influence on the definition of SpecC V2.0
• straightforward extension for SpecC V2.0
• comparable to ASM specifications of SystemC and 

VHDL 93
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Formal Execution Semantics (1)

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of  par)
• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)
{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)
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• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time
– other statements execute in zero simulation time

behavior B
{ void main(void)
{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0  <=  Tstart(a)  < Tend(a)  <    1
0  <=  Tstart(w) < Tend(w)  =  10

10 <=  Tstart(b)  < Tend(b)  <   11

Formal Execution Semantics (1)
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Formal Execution Semantics (1)

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <=   Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f)  < Tend(f)  <=   Tend(B)

behavior B2
{ void main(void)

{ d; e; f; }
};

behavior B1
{ void main(void)

{ a; b; c; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!
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• Atomicity
– Since there is no atomicity guaranteed, a safe 

mechanism for mutual exclusion is necessary
– SpecC 2.0:

• A mutex is implicitly contained in each channel instance

• Each channel method implicitly acquires the mutex when it 
starts execution and releases the mutex again when it 
finishes

• An acquired mutex is also released at wait and waitfor
statements and will be re-acquired before execution 
resumes

– This easily enables safe communication without 
unnecessary restrictions to the implementation!

Formal Execution Semantics (1)
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Formal Execution Semantics (1)

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <=   Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d)  < Tend(d) <=  Tend(B)

behavior B2
{ void main(void)

{ c; notify e; d; }
};

behavior B1
{ void main(void)

{ a; wait e;   b; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

�Abstract State Machines

– Simulation Semantics
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• Abstract State Machine (ASM)
– aka. Evolving Algebras (Y. Gurevich, 1987)
– ASM semantics already exist for

• Prolog, Concurrent Prolog
• C, C++, Java
• VHDL, VHDL-AMS, SystemC

– ASM semantics for SpecC published at ISSS’02

• ASM components
– Sequence of algebras (functions over domains):

states
– Rules define updates of functions:

state transitions

Formal Execution Semantics (2)
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Abstract State Machine (ASM)

f(0) := 42
f(0,0) := 0

Update SetUpdate Set

g    = 0
f(0) = undef
f(0,0) = 23
f(0,1) = 6

g    = 0
f(0) = 42
f(0,0) = 0
f(0,1) = 6

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0

Algebra A Algebra A‘

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0 U

pd
at

e 
S

et
U

pd
at

e 
S

et
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ASM: SpecC Kernel Semantics

• Phase 1: at least one BEHAVIOR is running
• Phase 2: all BEHAVIORs are not running

ExecuteBehaviors

ProcessEvents

Check/ResetEvents

AdvanceTime

ProcessTimeouts

if events
if no events

exit
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ASM: SpecC Behavior Semantics

running

waiting

completed

interrupted

last stmt

interrupt

wait
waitfor

fork

event
timeout

join

trap

last stmt

status(p) ∈ {running, waiting, interrupted, completed}
∈ BEHAVIOR:p

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running

• wait statement
if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self) 

endif;
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ASM: SpecC Statement Semantics

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running
• wait statement

if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self) 

endif;

• notify statement
if Self executes <notifynotify(EventList(EventList))>
then ∀ e ∈ EventList: notified(e)  := true, 

programCounter(Self) := nextStmt(Self)
endif;

� �������	
����������
��������������������

����	��������	��������∃������������������	��∧ ��∈ ���������������
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ASM: SpecC Summary

• Formal Semantics of SpecC Execution 
• complete execution semantics of SpecC V1.0 by ASMs

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• can be easily extended to V2.0
• influenced the definition of SpecC V2.0
• SpecC ASM specification is comparable to 

other ASM specifications
• SystemC
• VHDL 93 
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Lecture 7: Overview

• Homework Assignment 3
– Discussion

• Homework Assignment 4
– Design Exploration and Refinement

• SLDL Execution and Simulation Semantics
– Motivation
– System-level Language Semantics
– Formal Execution Semantics

• Time-interval formalism

• Abstract State Machines

�Simulation Semantics
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Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– available in LRM (appendix), good for understanding
� set of valid implementations

� possibly incomplete!

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N
• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N
• Expiration of notified events means N is set to Ø
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Simulation Semantics

• Abstract Simulation Algorithm for SpecC
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Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– clearly specifies the simulation semantics
– is one valid implementation of the semantics

– other valid implementations may exist as well


