-~

.

~

Modeling Flow for Automated System
Design and Exploration

Andreas Gerstlauer
Center for Embedded Computer Systems
University of California, Irvine
http://www.cecs.uci .edu/~gerstl

Ph.D. Final Defense, 4/16/2004 \ S_,

/ Outline \

* Introduction

* Design methodology
e« Computation design

« Communication design
* Design environment
 Experimental results

« Summary and conclusion

\ ~_

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 2

Thetalk isoutlined as follows:

I will start with an introduction in which | try to motivate the background for my
research, provide an overview of system design in genera and give a definition of
the problem being solved in this work

After an overview of the overall system design methodology, | will then focus on
describing the design steps that comprise computation and communication design
tasks.

The design flow has been implemented in the form of a design environment and |
want to give a brief overview of the environment and my contributions to it before
showing some experimental results obtained by applying to flow to several
industrial-strength design examples.

Finally, the talk concludes with a summary and alist of contributions.

/ Motivation and Goals \

* Productivity gap, increase in design complexity
* Raise level of abstraction
 Intellectual property (IP) reuse

> Well-defined, rigorous, structured design flow
» Unambiguous abstractions, models, transformations
» Systematic flow from specification to implementation
» Reliable feedback at early stages

» Design automation for synthesis, verification
» Rapid, early design space exploration

. c/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

Against the background of the well-known productivity gap in the design of SoCs
and embedded computer systemsin general, both raising the level of abstraction and
massive reuse of intellectual property (IP) components have been proposed as
solutions.

However, arbitrarily raising abstraction levels is not enough. In order to achieve the
required productivity gains, a systematic, structure, and complete design flow from
specification down to implementation with clear and unambiguous abstraction
levels, models, and transformations is needed. Only a well-defined, formalized flow
enables design automation for synthesis and verification. Furthermore, abstractions
have to be defined such that critical issues can be addresses reliably to enable rapid,
early design space exploration.

/ System Design \

Architecture

I Bus
) L S
Computation Communication Interface

8, Design Design
(f(/ QU 9 g \)G\\)\e . 3 Memory.
WO
ez, ¢ XA o
- B -
Specification BaCke.”d Design Communication

Implementation

Contr; Pipeline |[IF -
[Esm| P Netlist
Stack

1
ra
==n
Contry Datapath f| IF | \emor,
ol : ESM| 444 [
== S| TH

il e

Physical
(layout)
K (c /

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 4

(T
S

Using the Y -Chart for classification of design processes, design in general is
the process of moving from a behavioral to a structural and eventually
physical description where designs can be done at different levels of
granularity from individual transistors up to complete systems.

System design starts with a purely functional system specification. Based on
a separation of computation and communication, a system architecture and a
bus-functional communication system are derived from the specification
through computation and communication design tasks. Finaly, in a backend
design tasks, each of the components of the system is then brought down to a
cycle-accurate implementation by implementing its behavior in hardware or
software on top of the component’ s microarchitecture.

/ Problem Definition \

e Bridge semantic gap
e Split into manageable design steps

e Define intermediate abstraction levels, design models
e Synthesizable representation of critical design issues
» Abstract unnecessary implementation detail

o Define design steps
» Design decisions, model transformations

» Enable design automation

» Automated model refinement, decision making
» Enable rapid, early design space exploration

> Reliable feedback about critical issues at high levels
» Support for realistic SoC designs

K » Wide range of applications, target architectures /
C

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 5

In general, the semantic gap between specification and implementation is too big to
be completed in one step. In order to bridge the gap, the design process therefore
has to be broken down into smaller, manageabl e steps.

The problem is therefore to define such a flow of successive design steps and
intermediate design models. Intermediate abstractions and corresponding design
models have to be defined such that critical issues can be addressed early and
reliably while unnecessary implementation details are abstracted away. Then, each
design step has to be properly defined by formalizing the design decisions and
model transformations necessary in that step.

All in all, the resulting design flow should support awide variety of realistic system
applications and target architectures. The formalized nature of the process should
enable design automation for decision making and model refinement. Finaly,
together with design automation, high-level models should enable rapid, early
design space exploration with fast turn-around times.

/ Related Work \

e System-level design
« System-level design languages (SLDL) [SystemC, SpecC]
« Design methodologies [P-Chart, Rugby]
* Design environments [OCAPI, POLIS, COSYMA, COSMOS]

> No complete, structured flow with specific models, steps & transformations
» Limited applications, limited target architectures
e Simulation-centric system models
e Co-simulation at lower levels [Coste*99, Gerin*01]
¢ Transaction-level models [SystemC TLM, IPSIM]
* Models of computation for specification [Ptolemy]

» Horizontal integration of different models / components
» Lack vertical integration for synthesis-centric approach

e Communication abstraction

¢ Communication synthesis
[Coware, Lyonnard*01, Siegmund*01, Svarstad*01]

» No computational & intermediate abstraction, limited architectures

 Computation abstraction
¢ OS modeling [Tomiyama01, Desmet00]

K > Not fully integrated with other system parts /
’ (o]

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 6

Related work in the area so far has been dealing with several aspects:

There are a number of system-level design languages, methodologies and design
environments. However, none of these define an actual design flow with specific
models, steps and transformations. Furthermore, some of these approaches only
support limited applications or target architectures. For our work, we use the SpecC
SLDL to describe all the design models in our flow. However, the concepts
presented are independent of the language and can be equally applied to other
SLDLswith support for system modeling.

In terms of system design models, there are severa approaches dealing with
horizontal integration of different models at different levels of abstraction.
However, none of these works deals with the vertical integration needed to provide
a path to implementation.

Finaly, there are some approaches that deal with automated synthesis of
computation or communication. However, none of these are integrated into an
overall system design flow, they don’t provide intermediate models for rapid, early
design space exploration, and they are often limited in their support for redlistic
applications or architectures.

_

Outline

» Desigh methodology

-

Ph.D. Final Defense, 4/16/2004

Copyright © 2004 A. Gerstlauer

L

/ Structure / Space Order / Time \

Application domain MOCs (Matlab, SDF, etc.)

Requirements 4 | System deslgx‘ l/‘/// 1 —Constraints
[.
'
'

| Capture Algor. | 1

]

'
! |
: :
. A1 ' e ' | Untimed
Functional E Specification model E (causality)
! 3 E
'
I

| Computation design Cc?g]p. p

H
] 1
H |
] 1
H i)
Transaction - ! Architecture model H] Timed
b il (estimated)
1 1
H

!

— !

| Communication design Comm.{
IP

'

i

'

1

Bus- 1 | Timing-
functional accurate
'
1
RTLIS Implementation model 4 - Cycle-
1 accurate
[1
1 Backend 1
Gate _ _ _ _ _ Gate
k netlist Logic design, Physical design, Manufacturing delays N
[
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S ’ 8

The overall design methodology is shown here. In general, as we move down in the
level of abstraction from specification to implementation, more and more
implementation detail in the form of structure and order is added.

System design starts with the specification model that captures and unifies domain-
specific models of requirements and constraints. The specification model is a purely
functional description of the desired system behavior and it is untimed, i.e. partially
ordered based only on causality.

In the system design process, the specification is then mapped onto a set of system
components connected by system busses or other communication structures through
computation and communication design tasks. The intermediate architecture model
describes the system as a virtual architecture of processors communicating via
abstract channels, annotated with estimated processor execution delays. The
communication flow at the end of system design is a bus-functional description of
the system as a netlist of timing-accurate components connected by wires..

Finally, in the backend design process, components of the communication model
are each brought down to a cycle-accurate implementation at the RTL or
instruction-set level through hardware or software design tasks.

/ Design Process \

» Synthesis = Decision making + model refinement

GUI Specification model
Optim. algorithm i

[I
Design decisions

Refinement

@-6

Implementation model

» Successive model refinement

\r Layers of implementation detail fc\/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 9

Each of the different design tasks is then further broken down into several
successive design steps. With each step, a design model at a certain level of
abstraction is synthesized into a model at the next lower level. The result is a flow
with successive refinement of design models where a new layer of implementation
detail is added to the design in each step.

In general, synthesis of designs in each step can be separated into the two distinct
parts: making design decisions on the one hand and refining the design model to
represent the results of those decisions on the other hand.

Both parts can generally be manual or automated. To provide controllability,
transparency and observability of the design process, decisions are made under the
control of the designer through a graphical user interface or by selectively
employing automated decision making algorithms. On the other hand, with the help
of refinement tools that automatically generate design models from each other, there
isno need for tedious, error-prone manual model rewriting.

-

_

e PSM model of computation

Specification Model

H
/

e Abstract system functionality Specification model
Specification=<B,V,C,R> z S
. It
B: set of behaviors i
V: set of variables @ Cmr@
C: set of channels 1
Rc Bx(CUV): connectivity relation
Behavior semlgrgup (Br),° fé_{D‘II,I,V} @nicatio;@
>: sequential composition —
|| : parallel composition Backend design

H

| : pipelinedloop composition (plus guard)
v: mutually exclusive (plus guard)

Implementation model

i

e No implementation detail: untimed / no structure

_/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer S 10

)

As mentioned previously, the starting point for system design is the system
specification model. The specification model is a program state machine model of
computation. System functionality is described as a set of behaviors that
communicate through variables and abstract channels. Behaviors can be arranged
hierarchically in asequential, parallel, pipelined or state machine fashion. Behaviors

the leaf of the hierarchy then contain basic algorithmsin the form of C code.

In general, the specification model is free of any implementation detail and as such
is untimed and its behaviors do not make any implications about the structure of the

system architecture.

10

/ Outline \

 Computation design

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

In the rest of presentation, starting with compuation design, | want to focus on
compuation and communication design tasks as the main tasks of system design.
Due to time reasons, details of the backend design task are not presented here.

/ Computation Design Flow \

e Partitioning (structure / space)

 Define PE, memory architecture P
artitioning

» Map behaviors, variables onto
. Variable partitioning
PEs, memories

.Panitioned model
e Scheduling (order / time)

» Serialize behaviors on PEs Scheduling
Pre-defined, fixed order
» Dynamically under control of OS

scheduler
K fc ‘/
\ S, 12

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

The purpose of computation design is to implement the computation in the
specification as represented by its behaviors operating on variables on a virtual
architecture of processing elements and memories.

In afirst part, the structure of the computation architecture is defined by partitioning
behaviors and variables onto PEs and memories. This requires allocation of a set of
PEs and a set of shared system memories out of the PE database. Then, behaviors
and variables have to be mapped onto those PEs and memories.

In the second part, the order of behavior execution on the inherently sequential PEs
is determined. Behaviors can be scheduled statically or dynamically. In static
scheduling, behaviors are arranged in a pre-defined, fixed order. In dynamic
scheduling, the order of behaviors is determined dynamically under the control of an
OS scheduling algorithm selected out of the OS database.

12

4 N

e High-level RTOS abstraction
* Model standard RTOS concepts
— Multi-tasking, time-sharing, preemption
— Real-time scheduling
— Task synchronization & communication

» Wrap around SLDL primitives, replace event handling

Application Application
Application | Channels RTOS iComm. & Sync. AP
| Channels RTOS Model ISS
SLDL SLDL SLDL
Specification Architecture Implementation

» Accurate feedback at early stage
— Small overhead, low complexity

K — High relative accuracy
~_
\ S, 13

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

In order to properly model dynamic scheduling behavior at this high-level of
abstraction, an abstracted model of the underlying RTOS is inserted into the design.
The RTOS model describes expected RTOS behavior at a high-level without
unnecessary implementation details. It supports all the standard RTOS concepts for
multi-tasking, dynamic real-time scheduling including preemption and inter-task
communication and synchronization..

The RTOS model isimplemented by wrapping around and replacing the basic event
handling primitives of the underlying SLDL. As such, it is inserted as a layer
between SLDL and application at the architecture level. As part of backend design,
in the implementation, the RTOS model is then later replaced with areal RTOS on
top of the processor’s instruction set where application channels are mapped down
onto RTOS communication primitives.

Using the RTOS model, therefore, accurate feedback about results of dynamic
scheduling of behaviors can be obtained early at this high level. The RTOS only
adds a small overhead while being able to provide relatively accurate results.

13

Specification Model Example \

Pixel Control Radio Voice
E
: Vocoder
i T
; : 1 Spchin
; i i - Qs M- - - - - - -)
! JPEGInit} : t
: '
H 1
| '
i T 1
e [) |
| H ; 1
: !
| i i !
| : H |
! __JPEGEncode mduHigh = 1. Height !
4 T !
- — 0
ReceiveData /4 |}P= :mduW|de-:1..W|dlh i
! : 1 1 !
! | | G ‘ l
! i 1 1 f |
'
T 1 '
K j ===cfp=fromm=s= - Qo) --
I I i
s SpchOut 1 [SerOut f
H
H H I ;
H i :
Storage Voice Radio

\ ~_/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 14

In the following, | want to illustrate the different steps of the computation design
task using a system design example of a simplified mobile phone baseband
processor. Due to time reasons, | will only provide an overview of the design
decisions and model transformations required for each step. Details can be found in
the dissertation or can be discussed if necessary.

At the top level of its specification, the design examples runs concurrent blocks for
JPEG encoding on the left side and voice encoding/decoding on the right. Without
going into details, the JPEG encoder at its core encodes still pictures in a double-
nested pipeline. The voice encoder/decoder (Vocoder), on the other hand, runs
encoding and decoding tasksin parallel.

/DMA PE Model Example \

BI
"""""""")
I | —
D Sl
== ey R =
g ‘ > {{ e}
= i
1%2]
E

SndPara : : /
i /ColdFire N /
- JPEGInit \ Decode

: or

stripel] fo-----------

! ! JPEGENcode
! ! d X
H v U1 T
____________________ 2tz snarevpara |-~
. T
i

(Cdbk_start]

i
] Codebook
kEH

! G o)

it
/ e
cess -+

-
|HandleData

! i
: !
P i SR + SendHData
; pr==========s -+ RecvDData
i '
i '

- [-*Ruantizatio

Decoder_
Subframe

DCT_Start

@
g/

DCT

~quavcetl)-------- -
----------- SR
DCT_IP BO
----------------- m—-----------é-c-)- SpchOut [-1~
K’ PE layer, Behavior grouping, Synchronization, Timing
(c
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 15

During behavior partitioning, an additional layer of behaviors representing allocated
PEs (shown in red) is inserted, original specification behaviors are grouped under
PE behaviors according the selected mapping, synchronization behaviors and
channels are inserted to preserve execution semantics and leaf behaviors are
annotated with estimated execution delays. Not that as a consequence, shared
variables become system-global variables between PEs.

15

)
—_

§ g L
‘

{srerevpwre)

| SndRcvPara

o
|

e LY S | e B S e
-~ oDaa)

\ IPEGEN /) eeeoostramel-—{{ sarom)|
N BO
———————————————— Lezn S Em
» Memory layer, Variable grouping, Message passing, Memory access
K fcC
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 16

During variable partitioning, a new layer of memory behaviors is inserted, variables
are grouped under the memories according to the selected mapping, variable
accesses are refined into memory accesses and remaining global variables are

distributed into local PE memories and synchronization is updated to exchange
updated data val ues via message passing.

16

/ Scheduled Model Example \

.7 U SRS 77y YS— { s}y
Bl
Cropan JY|- - J
‘ Spchin
o D s
L (e N [/
- 3 sl IPEGINt Decode: =@ exc[40] P~
em 3o i
o D HW
£l|E
7 Cdbk_Start
= Subframe Codebook
s
. Cdbk_Done
fommeee- -‘M [Post_Decoder)
P ooma Do - ool
Do Quantizatio
K
H :—»-xdzx,cm ——————————
JPEGEN taeeo-ofowtrame]-- -t Serout -4~
———/ BO
7777777777777777 “Couparm P --------+--===-t+{_spehout_J-{~
so

k’ Behavior serialization, flattening, and reordering

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

C-

During static scheduling, selected concurrent behaviors are serialized, if necessary
parts of the behavior hierarchy are flattened and child behaviors are re-arranged in
the selected execution order.

/ Architecture Model Example \
 DMA L N S it semn_}-
(Croveara) E) DSPOS . quwmed{{ somm })-

DSP N sl
Coder \
3
Pre_Process

: 5
T D HW
|

Cdbk_Start

Codebook

Decoder

Subframe

Cdbk_Done

s
Cdbk_Don j

- Qoo
L Caan D!

{ @ osmodel /

— serout_J-

[v2)
Ol

\)
DCT_IP L—/ Y T SRS Spehout_)-{~

k OS layer + OS model, Task creation, Timing and synchronization refinement
(c”

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 18

Finally, during dynamic scheduling, an OS layer that includes the selected OS
model is inserted around each programmable PE, any remaining concurrent
behaviors are turned into OS tasks, and timing and synchronization inside tasks is
replaced with corresponding OS model primitives.

18

/ Architecture Model \

e Computation structure

* Non-terminating, concurrent PEs ©
Specification model

» Sequential, timed PE behaviors

Computation design

e Abstract communication
e Untimed message-passing

Architecture model

il

« Shared memory variable accesses
v —
Architecture=< PE,C,R > @caﬁm @
PE=PUIPUM : setof processing elements "
B
C: set of systemchannels

Rc Bx(CUA): systemconnectivity relation @

V processor pe P: p=< By, Vp,Cp,Ro > o
Y memory me M : m=<Vm, An>

K V IPip e IP:ip =< Bip,Vip, Ap > /
[
\ S, 19

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

The result of computation design is the architecture model. The architecture model
describes the system computation structure as a virtual architecture of non-
terminating, concurrent PEs communicating via abstract channels or shared memory

accesses. Each PE in turn is described as a set of local behaviors connected by local
variables and channels.

19

35ms

e oy
30 ms |SW (20.0, 30.73 ms) had
Rt YU

25ms +

.
-
P A
>y .
2320
cee 3388 $
%o o 088
0
&
20 MS J---ommoommomm oo TT9S - g fffffffffffffffffffffff
. bodds
*0es 000
.

20 2% 9% 3"“”

o

Transcoding delay

23 fodd
o, LI R4
** oree

o0e
%0
15ms 4 L XTI

.o,
** oree L 22 YN

HW (144.1, 12.24 ms)|
10 ms

10 30 50 70 920 110 130 150 170

Cost
» Mapping of 8 top-level encoder behaviors onto ColdFire + DSP + HW
» 85:04h for 6561 alternatives (1.7s simulation + 3s refinement each

)

K’ 100% fidelity /
f C
\ S, 20

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

In order to demonstrate the effectiveness of the architecture model for computation
design space exploration, we did several experiments to explore different aspects of
the design space for the voice encoder/decoder that is part of the design example.

The graph here shows exploration of the Vocoder PE design space. Using the the
scripting capabilities of the design environment, we ran an exhaustive search of all
possible mappings of the 8 top-level encoder behaviors onto a Motorola Coldfire
processor, a Motorola DSP and a custom hardware co-processor. We assumed fixed
costs for the processors and a linear cost function for the hardware. For each
aternative, an architecture model was generated and simulated to obtain results for
the transcoding delay. The complete generation and analysis for all 6561
alternatives was finished within a few days, showing that even exhaustive, brute-
force searches become possible.

As expected, a pure software solution is the cheapest but slowest design whereas a
pure hardware solution is the fastest design at a high cost. Comparing exploration
results to estimates of an actual implementation of the design, results show a 100%
relative accuracy, so-called fidelity. Using the results, we can therefore prune large
parts of the design space and focus further design efforts on the pareto-optimal
solutions near the transcoding delay constraint.

20

Modeling Simulation
Lines of Simulation Context Transcoding
code Time switches dela

Partitioned 12,601 16.7 s 0 9.37 ms
Round-robin 13,920 18.1s 64 10.9 ms
Decoder > Encoder 13,939 17.8s 2 10.2 ms
Encoder > Decoder 13,939 17.8s 8 11.3 ms
Implementation ~ 115,500 ~5h 2 10.7 ms
¢ Modeling effort

e Automatic scheduling refinement: seconds

* Manual scheduling refinement: <1lh

— 104 lines of code added / changed (< 1%)
e Implementation: weeks

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

_ @/

In another experiment, we evaluated different dynamic scheduling strategies for the
encoding and decoding tasks in the Vocoder. Using the OS model, we created
architecture models with round-robin and priority-based schedulers with different
relative priorities. Results confirm expectations that round-robin scheduling results
in low latencies while incurring a lot of context switches. On the other hand, since
the decoder has a lower complexity than the encoder, a scheduling strategy in which
the decoder has a higher priority than the encoder has the lowest latency and the
lowest number of contect switches asit corresponding to a shortest-job-first.

Again, using automatic model refinement tools, all three design alternatives could
be generated and simulated within seconds. Compared to actual implementations of
the Vocoder on top of real RTOSes which would require weeks to implement, we
can explore a much larger part of the design space in a much shorter amount of
time.

21

_

Outline

« Communication design

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

-/

&

22

22

/ Communication Design Flow \

Architecture model

* Network design (structure / space)
+ Define network topology Network Design
* Merge channels into streams

e Route end-to-end streams over
point-to-point network links

e Link design (order /time)

e Group logical into physical links

* Implement links over shared
media, protocols, wires

Comm. Link Design

Link grouping
Media interfacing

MAC model Protocol model

Communication model

\ ~_/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 23

After computation design, communication design deals with the implementation of
abstract communication channels over actual busses or other communication
structures.

Similar to computation design, communication design consist of two parts. First, the
topology of the communication network is defined and the end-to-end channels are
merged into untyped byte streams and routed over the network of point-to-point
logical links.

In the second part of communication design, logical point-to-point links between
network stations are then implemented over shared physical media by grouping
them into physical links and by implementing media, protocol and finally wire level
interfaces for each physical link in each network station.

In addition to the final communication model that is handed off to the backend
design task, communication design can output intermediate, transaction-level media
access and protocol models. As will be shown later, abstract TLMs allow rapid
design space exploration by trading off model accuracy and model complexity.

23

/ Architecture Model Example \

. jemsmemeeeenas q | Serl -+-
. DMA : 5i
| DSPOS oo - {seen_Jy-
cros Qo Py : si
ﬁ / psp_ | \
(ColdFire v : Vocoder TN\
T
JPEG l (oder
Decoder

! A hw
1 T
1
:
1
1
1

DCTAdapter

,I e
- e ()]

DCT_IP b P {Cspenout)
K ‘ o /
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer S 24

Recdling the architecture model at the output of computation design,
communication design starts at this point.

/ Transport Model Example \

DsSP

L e
(/,”"———— transHW i}
q
\HW J
-1

‘
i)
:
; B8O

)
>}
BI

i %)

(DSP_OS \i ; » - }:} L

| ! SI
O
1D
1D

DCTAdapter

_J

DCT_IP
)

-{] vansso ——}:] -~
SO

K Data conversion, Channel merging /

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 25

During channel streaming, presentation and session layers are inserted to implement
conversion of abstract data types into network bytes and to merge channel into a set
of streams between PEs. As part of data conversion, memory behaviors are refined
to a byte-accurate representation of their datalayout.

/ Link Model Example \

””” O R BI
: P
; : P

P

t— 3]

DCTAdapter

-
i
) R TL{E
| A

_ BO_HW

3 —

DCT_IP |
- @)
SO

=

SO_HW,
K’ Transducer insertion, Packeting, Routing ~— /
fc

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 26

During network segmenting, transducers are inserted to divide and bridge the
network into several segments, splitting end-to-end channels into point-to-point
links as necessary. Inside PEs and transducers, transport and network layers are
inserted to perform the necessary packeting and routing.

/ Stream Model Example \
':iit::if@"'

oo Qoms DA D -
oo 2

re

DCTAdapter

OSModel

>

G stmBo [j)->E

-Gro b [oo)

» Synchronization i so

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 27

As afirst step of link grouping, links are split into separate control and data streams
based on the type of bus interface of each link. Link layers that implement
synchronization over control channels around each data transaction are inserted.

/ DSP_OS ™\
@
""""""" H(<(
T (7l
L0 G
[: 400
o JHIHz - fis : G@%ﬁf ; S
, : ; N NGH HEHEk a4 3 [}
; o i : \!,J,,-..L.;_I_A_I!_I!_IL_LL/] D OG
o : : i E e
: v vy — : BO_HW,
o : DEC}
H M SO
i g SO_HW,
k’ Multiplexing, Addressing, Interrupt tasks /
fc
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 28

In the second step of link grouping, data streams in each segment are then
multiplexed over a shared medium channel. Stream layers that perform the
necessary media addressing are inserted into the components. In addition, interrupt
tasks that communicate with bus drivers through semaphores are inserted to
implement control transactions.

28

/ Protocol Model Example \

» Hardware abstraction layer (HAL), Arbitration, Data slicing,

Interrupt handling
k [/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 29

In the first step of implementing media interfaces, media access layers are inserted
into components to implement arbitration through arbitration channels and slicing of
data packets into bus words/frames transactions over protocol channels. For
progranmable PEs, media access layers become part of a newly added hardware
abstraction layer that will mark the boundary between the PE's software and
hardware. Finaly, interrupt handlers are created inside the hardware abstraction
layers to implement low-level control transactions including slave polling in case of
interrupt sharing.

29

DMA_BF

CF_BF

PIC

0
DCT_IP | wocr T BF |

Arbiter

k Hardware layer, Protocol insertion, Interrupt routing rc\/
S 30

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer b

Finally, timing-accurate bus-protocol implementations are inlined into the system
components, exposing the underlying bus wires. For programmable PEs, hardware
models are inserted that accurately describe the PE’s interrupt handling behavior.
Finally, bus-functional arbiter and interrupt controller models are inserted and
connected.

Communication Model Example (2)

STaveprotocol

DSP_HW

DSP_BF

50l

150

BI_BF

D230

nCs

oRD

e

A150)

E SI_BF

DR30)

230)

MCS

MCS

R0

WR

wR

STaveprotocol

R

ISR

50l

D230)

nCs

R0

R

150

BO_BF

SO_BF

Ph.D. Final Defense, 4/16/2004

Copyright © 2004 A. Gerstlauer

31

/ Communication Model \

e System architecture
« Computation & communication structure @@

e Timed, bus-functional
Communication =< PE UCE,W,c > v
PE=PUIPUM: set of processing elements GI@
CE=TUAuUIC: set of communication elements —
|
W: set of buswires
A4
¢:U e (peuceyOp W port mapping function
V bus- functional processor pe P: p =< Bp,Vp,Cp, Dp,Op, Ro > H
B s of behaviors
Cp: set of local channels T
Dp: set of busdrivers @Tﬁ@
Op: set of PE ports

Ro = Bpx(CouDp): local connectivity relation

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

The result of communication design is the communication model. It is a bus-
functional, timing-accurate description of the complete computation and
communication system architecture. The communication model is a netlist of
processing and communication elements connected via bus wires. Each bus
functional component in turn is described as a set of local behaviors, variables,
channels, bus drivers and ports.

32

e Simulation overhead vs. accuracy
100.0
[}
£
=
o
= —e— System
2 100 —=— Vocoder
Z // P
[}
N
©
E
ZO 1.0 +— A T T T T
Arch Link Stream MAC Protocol ~ Comm
» 12
s
s 1 -
s /
2 08
I
2 ﬂ —e— Transcoding
< 06
2 —=— JPEG
E 04
: Ly
2 02
N
2 L
E 0+—» : : : :
K S Arch Link Stream MAC Protocol Comm -
C
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 38

Benefits and trade-offs in terms of model complexities vs. model accuracies for
communication models at different levels of abstraction are shown here. The graphs
show simulation runtimes on a logarithmic scale and communication delays
measured by setting computation delays to zero and normalized against the
communication delay in the final implementation.

As can be expected, generally simulation runtimes grow exponentialy whereas
accuracies grow linearly with lower levels of abstraction, clearly demonstrating the
benefits of high-level models. As can bee seen, the protocol model can provide up
to 80% accuracy at significantly higher simulation speeds. The protocol model
includes data slicing and bus arbitration needed to accurately model delays in the
presence of interleaved transactions of multiple masters on the bus. On the other
hand, if no arbitration is present, asin the case of the Vocoder subsystem, the MAC
model can potentially provide relatively accurate data. In the Vocoder case, delay
inaccuracies in the MAC model are introduced due to the fact that slave polling is
not included in the MAC model. If the design does neither require arbitration nor
dave polling, the MAC model would be even more accurate. Note that since the
MAC model lumps severa all bus transfers within a packet into a single transaction,
simulation speeds are disproportionally higher compared to the protocol model.

All in al, results confirm the choice of both MAC and protocol models for
communication design space exploration depending on the selected target
architecture.

33

/ Outline \

* Design environment

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

The design flow has been implemented in the form of the SoC design environment.

Alg. selection

/ smement . O0C ENvironment (SCE)

Browsing

Spec. optimization

—
Profiling
weights

S—

- Comp. / IP

PE Allocation

Profiling data

Arch. synthesis

Capture

Specification model

Task Scheduling

Beh. Mapping
—
Comp. / IP
models

Design y decisions N Arch. refinement

ion results

S—
3 Protocol i
CE Allocation Comm. synthesis
o Design decisions 2
Net. connectivity 9 Comm. refinement

Architecture model

Channel routing —

Protocol
models

—
- RTL/OS
RTL synthesis

imation results

HW/SW synthesis

Design 4 decisions

Communication model

HW/SW refinement|

Protocol synthesis

RTOS targeting

o

mplementation model

Validation \
User Interface (VUI)

Compile

Profile

Simulate

Verify

Synthesize

Estimate

Simulate

Verify

Synthesize

Estimate

Simulate

Verify

Synthesize

Simulate

Verify /
(<

Ph.D. Final Defense, 4/16/2004

Copyright © 2004 A. Gerstlauer \ S , 35

The overall architecture of the SoC design environment is shown here. As part of
this work, the design environment’s general framework including architecture, tool
flow, databases, and interfaces has been developed. Tools for automatic model
refinement have been integrated into the design environment, enabling generation of
complete designs within minutes. The design environment supports automated
decision making through a plug-in mechanism such that the design can selectively
apply algorithms to all or part of a design at any time. Finally, graphical user
interfaces for model visualization and decision entry have been developed that aid

and steer the designer in the exploration process.

35

/ Outline \

* Experimental results

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

In the following, | will show results obtained by applying the design flow to the
example design presented throughout this presentation. In general, results have been
obtained for the overall system and for both VVocoder and JPEG encoder subsystems

design separately.

36

~

~

30000

25000 -

20000 -
—e—Baseband
15000

> —=— Vocoder
W JPEG

Lines of code (LOC)

10000 -

5000 -

¢’ “ & eé \C\f\ \s <
3
R & & ¥ &
K ‘ o /
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer Q/ 37

Model complexities as measure by the number of lines of code for models of
different designs at different levels are shown here. As expected, models generally
grow linearly with lower levels of abstraction. At the RTL level, however, model
sizes grow exponentially due to the high overhead necessary for cycle-accurate state

machine modeling where growth depends to a large extend on the size of the
hardware part.

Note that model growth does not depend on the size of the original specification.
Rather, model complexities grow depending on the complexity of the target
architecture and hence the necessary implementation detail to be added.

37

1000
© 100 - /
=
2
©
E]
£ 10 A
‘»
o
&
= —
£ —
S 1 ——— e : : :

& Q‘o N & S & N vo & Q ©
R N3 9&5\ S NV °.$® Q] 00& Q:\\/
0.1
—e— Baseband —=— Vocoder JPEG
K ‘ Cc /

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 38

In terms of simulation overhead, it can be seen that all throughout computation
design, amost no additional overhead is introduced. Only in the link design phase,
simulation runtimes start growing exponentially as explained earlier during
communication modeling. Again, exponential growth of runtimes during backend
design depends exclusively on the relative size of the hardware part in the design.

38

~
/

=
o
[S)

]

o
©
S

o
>
o

Normalized simulated delay
o
D
o

o
N
o

0.00 —
Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

—e— Transcoding —s— JPEG encoding

- C~

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer b

Finally, looking at accuracies of models at different levels of abstraction, results
confirm the choice of the architecture model as intermediate model for exploration,
especially considering the fact that no additional simulation overhead is introduced
up to this point. For the designs shown here, the architecture model is over 80%
accurate. PE and partitioned models are generally not accurate enough as they
ignore the effects of sequential execution on PEs.

39

/ Outline \

« Summary and conclusion

\ ~_

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 40

/ Contributions \

e Systematic, structured, well-defined system design flow
» Specification to implementation
» Computation, communication, backend design tasks
» Support for realistic applications, target architectures
* Defined abstraction levels, models
* PE, memory, IP modeling for computation abstraction
* OS model for dynamic scheduling abstraction
» Communication abstractions at several levels
« Defined design steps
» Design decisions + model transformations
e Identified intermediate models for exploration
» Reliable feedback about critical issues at early stages
e Defined interactive system design framework
* Tool flow, databases, architecture, interfaces
» Graphical user interfaces for decision entry + model visualization

» Productivity gains
» Automation of model refinement and decision making
K » Rapid, early design space exploration

c-/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

In summary, the main contribution of this work is the definition of a complete
system design flow in a structured, systematic manner. Starting from an abstract,
functional specification, a cycle-accurate implementation is derived through
computation, communication and backend design tasks. The flow supports a wide
variety of realistic applications and target architectures.

We defined abstraction levels and corresponding design models breaking the design
flow into individual steps. PE, memory, IP and OS models for computation
abstraction have been developed. Communication abstractions at several levels have
been defined.

For each design step, necessary design decisions and model transformations have
been defined. Furthermore, intermediate models for reliable, rapid and early design
space exploration have been identified.

The design flow has been implemented in the form of a SoC design environment.
The genera framework of the design environment including tool flow, databases,
architecture and interfaces has been defined. Furthermore, graphical user interfaces
for decision entry and model visualization have been devel oped.

In conclusion, following this design flow, required productivity gains can be
achieved. Steps have been defined such that decision making and model refinement
can be automated. Together with design automation, abstract models at high levels
enable rapid exploration of large parts of the design space in short amounts of time.

41

/ Selected Publications \

« Books

e A. Gerstlauer, R. Domer, J. Peng, D. Gajski, “System Design: A Practical
Guide with SpecC”, Kluwer, 2001.

e D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, “SpecC: Specification
Language and Methodology”, Kluwer, 2000.

* Book chapters
¢ A. Gerstlauer, H. Yu, D. Gajski, “RTOS Modeling for System-Level Design”,
Embedded Software for SoC, Kluwer, 2003.

¢ A. Rettberg, F. Rammig, A. Gerstlauer, D. Gajski, W. Hardt, B. Kleinjohann,
“The Specification Language SpecC within the PARADISE Design
Environment”, Architecture and Design of Distributed Embedded Systems,
Kluwer, 2001.

e Conference Papers

« L. Cai, A. Gerstlauer, D. Gajski, “Retargetable Profiling for Rapid, Early
System-Level Design Space Exploration”, DAC 2004.

e A. Gerstlauer, H. Yu, D. Gajski, “RTOS Modeling for System-Level Design”,
DATE 2003.

e A. Gerstlauer, D. Gajski, “System-Level Abstraction Semantics”, ISSS 2002.

¢ W. Mueller, R. D6mer, A. Gerstlauer, “The Formal Execution Semantics of
SpecC”, ISSS 2002.

e A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, “SpecC System-Level Design
& Methodology Applled to the Design of a GSM Vocoder”, SASIMI 2)0\/

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

42

_

Backup Slides

Ph.D. Final Defense, 4/16/2004

43

-~

Behavior Partitioning

» Design decisions

e PE allocation and selection
— PE =set of (name, type) tuples

» Behavior mapping
— mapping functionm, : B~ PE

e Model transformations

_

* PE layer

— Additional layer of behavior hierarchy representing PEs
» Grouping

— Group behaviors under PEs according to mapping
* Synchronization

— Insert synchronization to preserve transition semantics
e Timining refinement

— Annotate behaviors with estimated execution delays

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

-~

Variable Partitioning \

» Design decisions

* Memory allocation and selection
— M =set of (name,type) tuples

» Variable mapping
— mappingfunctionm,:V,cVi-> M

e Model transformations

_

* Memory layer

— Insert behaviors representing shared memories
» Grouping

— Group global variables under shared memories according to mapping
* Message passing

— Distribute unmapped global variables, insert message passing

* Memory accesses

— Create memory interface, update shared variables accesses
Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 45

45

-~

Static Scheduling

e Design decisions

* Behavior order
— Vbe B,, B, c B:schedule S, = totally ordered set of children

s! s =

e Model transformations

_

» Serialization

— Sequentialize concurrent behavior compositions
* Flattening

— Move children into parent behavior as requested

» Reordering
— Arrange behaviors in selected execution order

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

46

-~

Dynamic Scheduling

» Design decisions

» Scheduling algorithm selection

— OSselection function os: PE +— set of agorithmsOS
e Task priority assignment

— task priority function p: B, c B~ Z*

e Model transformations

_

» OS layer
— Additional OS layer around programmable PEs
— Insert abstract OS model for selected scheduling strategy
» Task creation
— Turn concurrent behaviors into OS tasks
» Task refinement
— Replace delay primitives
e Synchronization refinement
— Replace event handling primitives

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

47

-~

Channel Streaming

» Design decisions

* Network byte layout
— layout function| over datatypesd e D :
D> Z xZ x{b,l},(d) = (size, alignment, endianess)
» Channel merging
— merging function m, :set of channelsC, - set of streamsS

e Model transformations

_

» Presentation layer
— Conversion of abstract data types into network bytes
— Memory data byte layout

e Session layer
— Merge channels into message streams

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

48

-~

Network Segmenting

» Design decisions

e Transducer allocation
— T =setof (name,type) tuples
e Channel routing & packeting

— Vstreamse S:route R, = ordered set of hopsr € (PEUT)
— packet function p: S Z*, p(s) = packet size

e Model transformations

_

e Transport layer
— Splitting of message streams into packet streams
— Flow control, error correction
* Network layer
— Insert transducers and links
— Routing of packets over links between PEs and transducers

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer

49

-~

Link Grouping

e Design decisions

» Bus/protocol allocation

— BUS=set of (name,type) tuples
e Station connectivity

— connectivity relation N < (PEUT)x BUS

— connection typefunctionif : N — interfacetypes|F
e Link parameters

— VI elinks L, parameter function m:

Li> NxNxZ*xZ",m(l) = (src,dst,addr,intr)

e Model transformations

_

e Link layer

— Splitting of links into control and data transactions
e Stream layer

— Multiplexing of data over media transaction via media addressing

— Implementation of interrupt tasks for control transactions

<

Ph.D. Final Defense, 4/16/2004

Copyright © 2004 A. Gerstlauer \ S ,

50

50

-~

Media Interfacing \

e Design decisions

 Arbiter allocation, bus master priority assignment
— A=setof (name,type) tuples, connectivity : A BUS
— busmaster priority function a: MASTERc N — 7
 Interrupt controller allocation, bus slave interrupt assgn.
— IC =set of (name,type) tuples, connectivity IC — PE
— busdaveinterrupt functioni : SLAVE < N set of interrupts

e Model transformations

_

* Media access layer, hardware abstraction layer (HAL)
— Slicing of data packets into media words/frames, media arbitration
— Implementation of interrupt handlers, slave polling

» Protocol layer, hardware layer
— Protocol transaction timing for sampling/driving wires

— Insert programmable PE interrupt hardware model

— Insert, connect arbiters and interrupt controllers r\/
C

Ph.D. Final Defense, 4/16/2004 Copyright © 2004 A. Gerstlauer \ S , 51

51

