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The talk is outlined as follows:
I will start with an introduction in which I try to motivate the background for my 
research, provide an overview of system design in general and give a definition of 
the problem being solved in this work
After an overview of the overall system design methodology, I will then focus on 
describing the design steps that comprise computation and communication design 
tasks.
The design flow has been implemented in the form of a design environment and I 
want to give a brief overview of the environment and my contributions to it before 
showing some experimental results obtained by applying to flow to several 
industrial-strength design examples.
Finally, the talk concludes with a summary and a list of contributions.
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Motivation and Goals

• Productivity gap, increase in design complexity
• Raise level of abstraction
• Intellectual property (IP) reuse

Well-defined, rigorous, structured design flow
• Unambiguous abstractions, models, transformations
• Systematic flow from specification to implementation
• Reliable feedback at early stages

Design automation for synthesis, verification
Rapid, early design space exploration

Against the background of the well-known productivity gap in the design of SoCs
and embedded computer systems in general, both raising the level of abstraction and 
massive reuse of intellectual property (IP) components have been proposed as 
solutions.
However, arbitrarily raising abstraction levels is not enough. In order to achieve the 
required productivity gains, a systematic, structure, and complete design flow from 
specification down to implementation with clear and unambiguous abstraction 
levels, models, and transformations is needed. Only a well-defined, formalized flow 
enables design automation for synthesis and verification. Furthermore, abstractions 
have to be defined such that critical issues can be addresses reliably to enable rapid, 
early design space exploration.
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Using the Y-Chart for classification of design processes, design in general is 
the process of moving from a behavioral to a structural and eventually 
physical description where designs can be done at different levels of 
granularity from individual transistors up to complete systems.
System design starts with a purely functional system specification. Based on 
a separation of computation and communication, a system architecture and a 
bus-functional communication system are derived from the specification 
through computation and communication design tasks. Finally, in a backend 
design tasks, each of the components of the system is then brought down to a 
cycle-accurate implementation by implementing its behavior in hardware or 
software on top of the component’s microarchitecture. 
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Problem Definition
• Bridge semantic gap

• Split into manageable design steps
• Define intermediate abstraction levels, design models

• Synthesizable representation of critical design issues
• Abstract unnecessary implementation detail

• Define design steps
• Design decisions, model transformations

Enable design automation
Automated model refinement, decision making

Enable rapid, early design space exploration
Reliable feedback about critical issues at high levels

Support for realistic SoC designs
Wide range of applications, target architectures

In general, the semantic gap between specification and implementation is too big to 
be completed in one step. In order to bridge the gap, the design process therefore 
has to be broken down into smaller, manageable steps. 
The problem is therefore to define such a flow of successive design steps and 
intermediate design models. Intermediate abstractions and corresponding design 
models have to be defined such that critical issues can be addressed early and 
reliably while unnecessary implementation details are abstracted away.  Then, each 
design step has to be properly defined by formalizing the design decisions and 
model transformations necessary in that step.
All in all, the resulting design flow should support a wide variety of realistic system 
applications and target architectures. The formalized nature of the process should 
enable design automation for decision making and model refinement. Finally, 
together with design automation, high-level models should enable rapid, early 
design space exploration with fast turn-around times.
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Related Work
• System-level design

• System-level design languages (SLDL) [SystemC, SpecC]
• Design methodologies [P-Chart, Rugby]
• Design environments [OCAPI, POLIS, COSYMA, COSMOS]

No complete, structured flow with specific models, steps & transformations
Limited applications, limited target architectures

• Simulation-centric system models
• Co-simulation at lower levels [Coste+99, Gerin+01]
• Transaction-level models [SystemC TLM, IPSIM]
• Models of computation for specification [Ptolemy]

Horizontal integration of different models / components
Lack vertical integration for synthesis-centric approach

• Communication abstraction
• Communication synthesis

[Coware, Lyonnard+01, Siegmund+01, Svarstad+01]
No computational & intermediate abstraction, limited architectures

• Computation abstraction
• OS modeling [Tomiyama01, Desmet00]

Not fully integrated with other system parts

Related work in the area so far has been dealing with several aspects:
There are a number of system-level design languages, methodologies and design 
environments. However, none of these define an actual design flow with specific 
models, steps and transformations. Furthermore, some of these approaches only 
support limited applications or target architectures. For our work, we use the SpecC
SLDL to describe all the design models in our flow. However, the concepts 
presented are independent of the language and can be equally applied to other 
SLDLs with support for system modeling.
In terms of system design models, there are several approaches dealing with 
horizontal integration of different models at different levels of abstraction. 
However, none of these works deals with the vertical integration needed to provide 
a path to implementation.
Finally, there are some approaches that deal with automated synthesis of 
computation or communication. However, none of these are integrated into an 
overall system design flow, they don’t provide intermediate models for rapid, early 
design space exploration, and they are often limited in their support for realistic 
applications or architectures.
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The overall design methodology is shown here. In general, as we move down in the 
level of abstraction from specification to implementation, more and more 
implementation detail in the form of structure and order is added.
System design starts with the specification model that captures and unifies domain-
specific models of requirements and constraints. The specification model is a purely 
functional description of the desired system behavior and it is untimed, i.e. partially 
ordered based only on causality.
In the system design process, the specification is then mapped onto a set of system 
components connected by system busses or other communication structures through 
computation and communication design tasks. The intermediate architecture model 
describes the system as a virtual architecture of processors communicating via 
abstract channels, annotated with estimated processor execution delays. The 
communication flow at the end of system design is a bus-functional description of 
the system as a netlist of timing-accurate components connected by wires..
Finally, in the backend design process, components of the communication model 
are each brought down to a cycle-accurate implementation at the RTL or 
instruction-set level through hardware or software design tasks.
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Design Process
• Synthesis = Decision making + model refinement

Successive model refinement
Layers of implementation detail

RefinementRefinement

Model nModel n

LibLib

Model n+1Model n+1

Specification modelSpecification model

Implementation modelImplementation model

Optim. algorithmOptim. algorithm

GUIGUI

Design decisions

Each of the different design tasks is then further broken down into several 
successive design steps. With each step, a design model at a certain level of 
abstraction is synthesized into a model at the next lower level. The result is a flow 
with successive refinement of design models where a new layer of implementation 
detail is added to the design in each step.
In general, synthesis of designs in each step can be separated into the two distinct 
parts: making design decisions on the one hand and refining the design model to 
represent the results of those decisions on the other hand. 
Both parts can generally be manual or automated. To provide controllability, 
transparency and observability of the design process, decisions are made under the 
control of the designer through a graphical user interface or by selectively 
employing automated decision making algorithms. On the other hand, with the help 
of refinement tools that automatically generate design models from each other, there 
is no need for tedious, error-prone manual model rewriting.
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Specification Model

• PSM model of computation
• Abstract system functionality

• No implementation detail: untimed / no structure
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As mentioned previously, the starting point for system design is the system 
specification model. The specification model is a program state machine model of 
computation. System functionality is described as a set of behaviors that 
communicate through variables and abstract channels. Behaviors can be arranged 
hierarchically in a sequential, parallel, pipelined or state machine fashion. Behaviors 
the leaf of the hierarchy then contain basic algorithms in the form of C code.
In general, the specification model is free of any implementation detail and as such 
is untimed and its behaviors do not make any implications about the structure of the 
system architecture.
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In the rest of presentation, starting with compuation design, I want to focus on 
compuation and communication design tasks as the main tasks of system design. 
Due to time reasons, details of the backend design task are not presented here.
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Computation Design Flow

• Partitioning (structure / space)
• Define PE, memory architecture
• Map behaviors, variables onto 

PEs, memories 

• Scheduling (order / time)
• Serialize behaviors on PEs
• Pre-defined, fixed order
• Dynamically under control of OS 

scheduler

PartitioningPartitioning

PEPE

Specification modelSpecification model

Architecture modelArchitecture model

Partitioned modelPartitioned model

SchedulingScheduling

OSOS

Behavior partitioning
Variable partitioning

Static scheduling
Dynamic scheduling

The purpose of computation design is to implement the computation in the 
specification as represented by its behaviors operating on variables on a virtual 
architecture of processing elements and memories.
In a first part, the structure of the computation architecture is defined by partitioning 
behaviors and variables onto PEs and memories. This requires allocation of a set of 
PEs and a set of shared system memories out of the PE database. Then, behaviors 
and variables have to be mapped onto those PEs and memories.
In the second part, the order of behavior execution on the inherently sequential PEs
is determined. Behaviors can be scheduled statically or dynamically. In static 
scheduling, behaviors are arranged in a pre-defined, fixed order. In dynamic 
scheduling, the order of behaviors is determined dynamically under the control of an 
OS scheduling algorithm selected out of the OS database.
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OS Modeling
• High-level RTOS abstraction

• Model standard RTOS concepts
– Multi-tasking, time-sharing, preemption
– Real-time scheduling
– Task synchronization & communication

• Wrap around SLDL primitives, replace event handling

• Accurate feedback at early stage
– Small overhead, low complexity
– High relative accuracy
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In order to properly model dynamic scheduling behavior at this high-level of 
abstraction, an abstracted model of the underlying RTOS is inserted into the design. 
The RTOS model describes expected RTOS behavior at a high-level without 
unnecessary implementation details. It supports all the standard RTOS concepts for 
multi-tasking, dynamic real-time scheduling including preemption and inter-task 
communication and synchronization..
The RTOS model is implemented by wrapping around and replacing the basic event 
handling primitives of the underlying SLDL. As such, it is inserted as a layer 
between SLDL and application at the architecture level. As part of backend design, 
in the implementation, the RTOS model is then later replaced with a real RTOS on 
top of the processor’s instruction set where application channels are mapped down 
onto RTOS communication primitives. 
Using the RTOS model, therefore, accurate feedback about results of dynamic 
scheduling of behaviors can be obtained early at this high level. The RTOS only 
adds a small overhead while being able to provide relatively accurate results.
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Specification Model Example
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In the following, I want to illustrate the different steps of the computation design 
task using a system design example of a simplified mobile phone baseband
processor. Due to time reasons, I will only provide an overview of the design 
decisions and model transformations required for each step. Details can be found in 
the dissertation or can be discussed if necessary.
At the top level of its specification, the design examples runs concurrent blocks for 
JPEG encoding on the left side and voice encoding/decoding on the right. Without 
going into details, the JPEG encoder at its core encodes still pictures in a double-
nested pipeline. The voice encoder/decoder (Vocoder), on the other hand, runs 
encoding and decoding tasks in parallel. 
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PE Model Example

PE layer, Behavior grouping, Synchronization, Timing
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During behavior partitioning, an additional layer of behaviors representing allocated 
PEs (shown in red) is inserted, original specification behaviors are grouped under 
PE behaviors according the selected mapping, synchronization behaviors and 
channels are inserted to preserve execution semantics and leaf behaviors are 
annotated with estimated execution delays. Not that as a consequence, shared 
variables become system-global variables between PEs. 
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Partitioned Model Example
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Memory layer, Variable grouping, Message passing, Memory access

During variable partitioning, a new layer of memory behaviors is inserted, variables 
are grouped under the memories according to the selected mapping, variable 
accesses are refined into memory accesses and remaining global variables are 
distributed into local PE memories and synchronization is updated to exchange 
updated data values via message passing.
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Scheduled Model Example
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Behavior serialization, flattening, and reordering

During static scheduling, selected concurrent behaviors are serialized, if necessary 
parts of the behavior hierarchy are flattened and child behaviors are re-arranged in 
the selected execution order.
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Architecture Model Example
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OS layer + OS model, Task creation, Timing and synchronization refinement

Finally, during dynamic scheduling, an OS layer that includes the selected OS 
model is inserted around each programmable PE, any remaining concurrent 
behaviors are turned into OS tasks, and timing and synchronization inside tasks is 
replaced with corresponding OS model primitives. 
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Architecture Model

• Computation structure
• Non-terminating, concurrent PEs
• Sequential, timed PE behaviors

• Abstract communication
• Untimed message-passing
• Shared memory variable accesses
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The result of computation design is the architecture model. The architecture model 
describes the system computation structure as a virtual architecture of non-
terminating, concurrent PEs communicating via abstract channels or shared memory 
accesses. Each PE in turn is described as a set of local behaviors connected by local 
variables and channels.
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In order to demonstrate the effectiveness of the architecture model for computation 
design space exploration, we did several experiments to explore different aspects of 
the design space for the voice encoder/decoder that is part of the design example.
The graph here shows exploration of the Vocoder PE design space. Using the the
scripting capabilities of the design environment, we ran an exhaustive search of all 
possible mappings of the 8 top-level encoder behaviors onto a Motorola Coldfire
processor, a Motorola DSP and a custom hardware co-processor. We assumed fixed 
costs for the processors and a linear cost function for the hardware. For each 
alternative, an architecture model was generated and simulated to obtain results for 
the transcoding delay. The complete generation and analysis for all 6561 
alternatives was finished within a few days, showing that even exhaustive, brute-
force searches become possible.
As expected, a pure software solution is the cheapest but slowest design whereas a 
pure hardware solution is the fastest design at a high cost. Comparing exploration 
results to estimates of an actual implementation of the design, results show a 100% 
relative accuracy, so-called fidelity. Using the results, we can therefore prune large
parts of the design space and focus further design efforts on the pareto-optimal 
solutions near the transcoding delay constraint. 
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Vocoder OS Exploration

• Modeling effort
• Automatic scheduling refinement: seconds 
• Manual scheduling refinement: < 1 h

– 104 lines of code added / changed (< 1%)

• Implementation: weeks

 Modeling Simulation 

 Lines of 
code 

Simulation 
Time 

Context 
switches 

Transcoding 
delay 

Partitioned 12,601 16.7 s 0 9.37 ms 
Round-robin 13,920 18.1 s 64 10.9 ms 
Decoder > Encoder 13,939 17.8 s 2 10.2 ms 
Encoder > Decoder 13,939 17.8 s 8 11.3 ms 
Implementation ~ 115,500 ~ 5 h 2 10.7 ms 

 

 

In another experiment, we evaluated different dynamic scheduling strategies for the 
encoding and decoding tasks in the Vocoder. Using the OS model, we created 
architecture models with round-robin and priority-based schedulers with different 
relative priorities. Results confirm expectations that round-robin scheduling results 
in low latencies while incurring a lot of context switches. On the other hand, since 
the decoder has a lower complexity than the encoder, a scheduling strategy in which 
the decoder has a higher priority than the encoder has the lowest latency and the 
lowest number of contect switches as it corresponding to a shortest-job-first.
Again, using automatic model refinement tools, all three design alternatives could 
be generated and simulated within seconds. Compared to actual implementations of 
the Vocoder on top of real RTOSes which would require weeks to implement, we 
can explore a much larger part of the design space in a much shorter amount of 
time.
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Communication Design Flow

• Network design (structure / space)
• Define network topology
• Merge channels into streams
• Route end-to-end streams over 

point-to-point network links

• Link design (order / time)
• Group logical into physical links
• Implement links over shared 

media, protocols, wires
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Comm. Link DesignComm. Link Design
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protocols

Media
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After computation design, communication design deals with the implementation of 
abstract communication channels over actual busses or other communication 
structures.
Similar to computation design, communication design consist of two parts. First, the 
topology of the communication network is defined and the end-to-end channels are 
merged into untyped byte streams and routed over the network of point-to-point 
logical links.
In the second part of communication design, logical point-to-point links between 
network stations are then implemented over shared physical media by grouping 
them into physical links and by implementing media, protocol and finally wire level 
interfaces for each physical link in each network station.
In addition to the final communication model that is handed off to the backend 
design task, communication design can output intermediate, transaction-level media 
access and protocol models. As will be shown later, abstract TLMs allow rapid 
design space exploration by trading off model accuracy and model complexity.
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Architecture Model Example
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Recalling the architecture model at the output of computation design, 
communication design starts at this point.
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Transport Model Example
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Data conversion, Channel merging

During channel streaming, presentation and session layers are inserted to implement 
conversion of abstract data types into network bytes and to merge channel into a set 
of streams between PEs. As part of data conversion, memory behaviors are refined 
to a byte-accurate representation of their data layout.
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Link Model Example
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Transducer insertion, Packeting, Routing

During network segmenting, transducers are inserted to divide and bridge the 
network into several segments, splitting end-to-end channels into point-to-point 
links as necessary. Inside PEs and transducers, transport and network layers are 
inserted to perform the necessary packeting and routing.



27

Copyright © 2004 A. Gerstlauer 27Ph.D. Final Defense, 4/16/2004

Stream Model Example
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Synchronization

As a first step of link grouping, links are split into separate control and data streams 
based on the type of bus interface of each link. Link layers that implement 
synchronization over control channels around each data transaction are inserted. 
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Media Access Model Example
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Multiplexing, Addressing, Interrupt tasks

In the second step of link grouping, data streams in each segment are then 
multiplexed over a shared medium channel. Stream layers that perform the 
necessary media addressing are inserted into the components. In addition, interrupt 
tasks that communicate with bus drivers through semaphores are inserted to 
implement control transactions.
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Protocol Model Example
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Hardware abstraction layer (HAL), Arbitration, Data slicing, 
Interrupt handling

In the first step of implementing media interfaces, media access layers are inserted 
into components to implement arbitration through arbitration channels and slicing of 
data packets into bus words/frames transactions over protocol channels. For 
programmable PEs, media access layers become part of a newly added hardware 
abstraction layer that will mark the boundary between the PE’s software and 
hardware. Finally, interrupt handlers are created inside the hardware abstraction 
layers to implement low-level control transactions including slave polling in case of 
interrupt sharing.
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Communication Model Example (1)

Hardware layer, Protocol insertion, Interrupt routing

Finally, timing-accurate bus-protocol implementations are inlined into the system 
components, exposing the underlying bus wires. For programmable PEs, hardware 
models are inserted that accurately describe the PE’s interrupt handling behavior. 
Finally, bus-functional arbiter and interrupt controller models are inserted and 
connected.
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Communication Model Example (2)
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Communication Model

• System architecture
• Computation & communication structure
• Timed, bus-functional
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The result of communication design is the communication model. It is a bus-
functional, timing-accurate description of the complete computation and 
communication system architecture.  The communication model is a netlist of 
processing and communication elements connected via bus wires. Each bus-
functional component in turn is described as a set of local behaviors, variables, 
channels, bus drivers and ports.
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Communication Modeling
• Simulation overhead vs. accuracy
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Benefits and trade-offs in terms of model complexities vs. model accuracies for 
communication models at different levels of abstraction are shown here. The graphs 
show simulation runtimes on a logarithmic scale and communication delays 
measured by setting computation delays to zero and normalized against the 
communication delay in the final implementation.
As can be expected, generally simulation runtimes grow exponentially whereas 
accuracies grow linearly with lower levels of abstraction, clearly demonstrating the 
benefits of high-level models. As can bee seen, the protocol model can provide up
to 80% accuracy at significantly higher simulation speeds. The protocol model 
includes data slicing and bus arbitration needed to accurately model delays in the 
presence of interleaved transactions of multiple masters on the bus. On the other 
hand, if no arbitration is present, as in the case of the Vocoder subsystem, the MAC 
model can potentially provide relatively accurate data. In the Vocoder case, delay 
inaccuracies in the MAC model are introduced due to the fact that slave polling is 
not included in the MAC model. If the design does neither require arbitration nor 
slave polling, the MAC model would be even more accurate. Note that since the 
MAC model lumps several all bus transfers within a packet into a single transaction, 
simulation speeds are disproportionally higher compared to the protocol model. 
All in all, results confirm the choice of both MAC and protocol models for 
communication design space exploration depending on the selected target 
architecture.
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Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

The design flow has been implemented in the form of the SoC design environment. 
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The overall architecture of the SoC design environment is shown here. As part of 
this work, the design environment’s general framework including architecture, tool 
flow, databases, and interfaces has been developed. Tools for automatic model 
refinement have been integrated into the design environment, enabling generation of 
complete designs within minutes. The design environment supports automated 
decision making through a plug-in mechanism such that the design can selectively 
apply algorithms to all or part of a design at any time. Finally, graphical user 
interfaces for model visualization and decision entry have been developed that aid 
and steer the designer in the exploration process.
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Outline
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• Summary and conclusion

In the following, I will show results obtained by applying the design flow to the 
example design presented throughout this presentation. In general, results have been 
obtained for the overall system and for both Vocoder and JPEG encoder subsystems 
design separately.
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Model Complexities
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Model complexities as measure by the number of lines of code for models of 
different designs at different levels are shown here. As expected, models generally 
grow linearly with lower levels of abstraction. At the RTL level, however, model 
sizes grow exponentially due to the high overhead necessary for cycle-accurate state 
machine modeling where growth depends to a large extend on the size of the 
hardware part. 
Note that model growth does not depend on the size of the original specification. 
Rather, model complexities grow depending on the complexity of the target 
architecture and hence the necessary implementation detail to be added.
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Simulation Runtimes

0.1

1

10

100

1000

Spe
c PE

Part

Sch
ed

Arch Lin
k

Stre
am MAC

Prot

Comm
RTL/C

No
rm

al
iz

ed
 s

im
ul

at
io

n 
tim

e

Baseband Vocoder JPEG

In terms of simulation overhead, it can be seen that all throughout computation 
design, almost no additional overhead is introduced. Only in the link design phase, 
simulation runtimes start growing exponentially as explained earlier during 
communication modeling. Again, exponential growth of runtimes during backend 
design depends exclusively on the relative size of the hardware part in the design.
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Model Accuracies
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Finally, looking at accuracies of models at different levels of abstraction, results 
confirm the choice of the architecture model as intermediate model for exploration, 
especially considering the fact that no additional simulation overhead is introduced 
up to this point. For the designs shown here, the architecture model is over 80% 
accurate. PE and partitioned models are generally not accurate enough as they 
ignore the effects of sequential execution on PEs. 
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Contributions
• Systematic, structured, well-defined system design flow

• Specification to implementation
• Computation, communication, backend design tasks
• Support for realistic applications, target architectures

• Defined abstraction levels, models
• PE, memory, IP modeling for computation abstraction
• OS model for dynamic scheduling abstraction
• Communication abstractions at several levels

• Defined design steps
• Design decisions + model transformations

• Identified intermediate models for exploration
• Reliable feedback about critical issues at early stages

• Defined interactive system design framework
• Tool flow, databases, architecture, interfaces
• Graphical user interfaces for decision entry + model visualization

Productivity gains
• Automation of model refinement and decision making
• Rapid, early design space exploration

In summary, the main contribution of this work is the definition of a complete 
system design flow in a structured, systematic manner. Starting from an abstract, 
functional specification, a cycle-accurate implementation is derived through 
computation, communication and backend design tasks. The flow supports a wide 
variety of realistic applications and target architectures.
We defined abstraction levels and corresponding design models breaking the design 
flow into individual steps. PE, memory, IP and OS models for computation 
abstraction have been developed. Communication abstractions at several levels have 
been defined.
For each design step, necessary design decisions and model transformations have 
been defined. Furthermore, intermediate models for reliable, rapid and early design 
space exploration have been identified.
The design flow has been implemented in the form of a SoC design environment. 
The general framework of the design environment including tool flow, databases, 
architecture and interfaces has been defined. Furthermore, graphical user interfaces 
for decision entry and model visualization have been developed.
In conclusion, following this design flow, required productivity gains can be 
achieved. Steps have been defined such that decision making and model refinement 
can be automated. Together with design automation, abstract models at high levels 
enable rapid exploration of large parts of the design space in short amounts of time.
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Behavior Partitioning
• Design decisions

• PE allocation and selection
–

• Behavior mapping
–

• Model transformations
• PE layer

– Additional layer of behavior hierarchy representing PEs

• Grouping
– Group behaviors under PEs according to mapping

• Synchronization
– Insert synchronization to preserve transition semantics

• Timining refinement
– Annotate behaviors with estimated execution delays

 tuples),( ofset typenamePE =

PEBmb a:function  mapping
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Variable Partitioning
• Design decisions

• Memory allocation and selection
–

• Variable mapping
–

• Model transformations
• Memory layer

– Insert behaviors representing shared memories

• Grouping
– Group global variables under shared memories according to mapping

• Message passing
– Distribute unmapped global variables, insert message passing

• Memory accesses
– Create memory interface, update shared variables accesses

 tuples),( ofset typenameM =

MVVm sv a⊆:function  mapping
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Static Scheduling

• Design decisions
• Behavior order

–

• Model transformations
• Serialization

– Sequentialize concurrent behavior compositions

• Flattening
– Move children into parent behavior as requested

• Reordering
– Arrange behaviors in selected execution order

children ofset  orderedtotally  schedule:, =⊆∈∀ bss SBBBb
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Dynamic Scheduling
• Design decisions

• Scheduling algorithm selection
–

• Task priority assignment
–

• Model transformations
• OS layer

– Additional OS layer around programmable PEs
– Insert abstract OS model for selected scheduling strategy

• Task creation
– Turn concurrent behaviors into OS tasks

• Task refinement
– Replace delay primitives

• Synchronization refinement
– Replace event handling primitives

OSPEos  algorithms ofset :function selection  OS a

+Ζ⊆ aBBp t:function priority task 
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Channel Streaming
• Design decisions

• Network byte layout
–

• Channel merging
–

• Model transformations
• Presentation layer

– Conversion of abstract data types into network bytes
– Memory data byte layout

• Session layer
– Merge channels into message streams

),,()(},l,b{
:  typesdataover  function layout 

** endianessalignmentsizedlD
Ddl

=×Ζ×Ζ

∈

a

SCm sc  streams ofset   channels ofset  :function  merging a
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Network Segmenting
• Design decisions

• Transducer allocation
–

• Channel routing & packeting
–
–

• Model transformations
• Transport layer

– Splitting of message streams into packet streams
– Flow control, error correction

• Network layer
– Insert transducers and links
– Routing of packets over links between PEs and transducers

)( hops ofset  ordered  route : stream TPErRSs s ∪∈=∈∀

 tuples),( ofset typenameT =

sizepacketspSp =Ζ+ )(,:function packet a
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Link Grouping
• Design decisions

• Bus/protocol allocation
–

• Station connectivity
–
–

• Link parameters
–

• Model transformations
• Link layer

– Splitting of links into control and data transactions

• Stream layer
– Multiplexing of data over media transaction via media addressing
– Implementation of interrupt tasks for control transactions

BUSTPEN ×∪⊆ )(relation ty connectivi

 tuples),( ofset typenameBUS =

),,,()(,
:function parameter  , links 

* intraddrdstsrclmNNL
mLl

=Ζ×Ζ××

∈∀
+a

IFNif   typesinterface :function   typeconnection a
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Media Interfacing
• Design decisions

• Arbiter allocation, bus master priority assignment
–
–

• Interrupt controller allocation, bus slave interrupt assgn. 
–
–

• Model transformations
• Media access layer, hardware abstraction layer (HAL)

– Slicing of data packets into media words/frames, media arbitration
– Implementation of interrupt handlers, slave polling

• Protocol layer, hardware layer
– Protocol transaction timing for sampling/driving wires
– Insert programmable PE interrupt hardware model
– Insert, connect arbiters and interrupt controllers

BUSAtypenameA a:tyconnectivi  tuples,),( ofset =
*:function priority master  bus Ζ⊆ aNMASTERa

PEICtypenameIC aty connectivi  tuples,),( ofset =

interrupts ofset  :function interrupt  slave bus aNSLAVEi ⊆


