
1

Ph.D. Final Defense, 4/16/2004

Modeling Flow for Automated System
Design and Exploration

Andreas Gerstlauer
Center for Embedded Computer Systems

University of California, Irvine
http://www.cecs.uci.edu/~gerstl

2

Copyright © 2004 A. Gerstlauer 2Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

The talk is outlined as follows:
I will start with an introduction in which I try to motivate the background for my
research, provide an overview of system design in general and give a definition of
the problem being solved in this work
After an overview of the overall system design methodology, I will then focus on
describing the design steps that comprise computation and communication design
tasks.
The design flow has been implemented in the form of a design environment and I
want to give a brief overview of the environment and my contributions to it before
showing some experimental results obtained by applying to flow to several
industrial-strength design examples.
Finally, the talk concludes with a summary and a list of contributions.

3

Copyright © 2004 A. Gerstlauer 3Ph.D. Final Defense, 4/16/2004

Motivation and Goals

• Productivity gap, increase in design complexity
• Raise level of abstraction
• Intellectual property (IP) reuse

Well-defined, rigorous, structured design flow
• Unambiguous abstractions, models, transformations
• Systematic flow from specification to implementation
• Reliable feedback at early stages

Design automation for synthesis, verification
Rapid, early design space exploration

Against the background of the well-known productivity gap in the design of SoCs
and embedded computer systems in general, both raising the level of abstraction and
massive reuse of intellectual property (IP) components have been proposed as
solutions.
However, arbitrarily raising abstraction levels is not enough. In order to achieve the
required productivity gains, a systematic, structure, and complete design flow from
specification down to implementation with clear and unambiguous abstraction
levels, models, and transformations is needed. Only a well-defined, formalized flow
enables design automation for synthesis and verification. Furthermore, abstractions
have to be defined such that critical issues can be addresses reliably to enable rapid,
early design space exploration.

4

Copyright © 2004 A. Gerstlauer 4Ph.D. Final Defense, 4/16/2004

System Design

Implementation

Mem RFState

Contr
ol

ALU

Datapath

PC

Contr
ol

Pipeline

State

IF
FSM

State

IF
FSM IP Netlist

RAM

IR

Memory

Computation
Design

Communication
Design

Backend Design Communication

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

Behavior(function)
Stru

cture

(architecture)

Physical
(layout)

Architecture

TransistorGate
RTL

System

Proc

Proc

Proc

Proc

Proc

Specification

Using the Y-Chart for classification of design processes, design in general is
the process of moving from a behavioral to a structural and eventually
physical description where designs can be done at different levels of
granularity from individual transistors up to complete systems.
System design starts with a purely functional system specification. Based on
a separation of computation and communication, a system architecture and a
bus-functional communication system are derived from the specification
through computation and communication design tasks. Finally, in a backend
design tasks, each of the components of the system is then brought down to a
cycle-accurate implementation by implementing its behavior in hardware or
software on top of the component’s microarchitecture.

5

Copyright © 2004 A. Gerstlauer 5Ph.D. Final Defense, 4/16/2004

Problem Definition
• Bridge semantic gap

• Split into manageable design steps
• Define intermediate abstraction levels, design models

• Synthesizable representation of critical design issues
• Abstract unnecessary implementation detail

• Define design steps
• Design decisions, model transformations

Enable design automation
Automated model refinement, decision making

Enable rapid, early design space exploration
Reliable feedback about critical issues at high levels

Support for realistic SoC designs
Wide range of applications, target architectures

In general, the semantic gap between specification and implementation is too big to
be completed in one step. In order to bridge the gap, the design process therefore
has to be broken down into smaller, manageable steps.
The problem is therefore to define such a flow of successive design steps and
intermediate design models. Intermediate abstractions and corresponding design
models have to be defined such that critical issues can be addressed early and
reliably while unnecessary implementation details are abstracted away. Then, each
design step has to be properly defined by formalizing the design decisions and
model transformations necessary in that step.
All in all, the resulting design flow should support a wide variety of realistic system
applications and target architectures. The formalized nature of the process should
enable design automation for decision making and model refinement. Finally,
together with design automation, high-level models should enable rapid, early
design space exploration with fast turn-around times.

6

Copyright © 2004 A. Gerstlauer 6Ph.D. Final Defense, 4/16/2004

Related Work
• System-level design

• System-level design languages (SLDL) [SystemC, SpecC]
• Design methodologies [P-Chart, Rugby]
• Design environments [OCAPI, POLIS, COSYMA, COSMOS]

No complete, structured flow with specific models, steps & transformations
Limited applications, limited target architectures

• Simulation-centric system models
• Co-simulation at lower levels [Coste+99, Gerin+01]
• Transaction-level models [SystemC TLM, IPSIM]
• Models of computation for specification [Ptolemy]

Horizontal integration of different models / components
Lack vertical integration for synthesis-centric approach

• Communication abstraction
• Communication synthesis

[Coware, Lyonnard+01, Siegmund+01, Svarstad+01]
No computational & intermediate abstraction, limited architectures

• Computation abstraction
• OS modeling [Tomiyama01, Desmet00]

Not fully integrated with other system parts

Related work in the area so far has been dealing with several aspects:
There are a number of system-level design languages, methodologies and design
environments. However, none of these define an actual design flow with specific
models, steps and transformations. Furthermore, some of these approaches only
support limited applications or target architectures. For our work, we use the SpecC
SLDL to describe all the design models in our flow. However, the concepts
presented are independent of the language and can be equally applied to other
SLDLs with support for system modeling.
In terms of system design models, there are several approaches dealing with
horizontal integration of different models at different levels of abstraction.
However, none of these works deals with the vertical integration needed to provide
a path to implementation.
Finally, there are some approaches that deal with automated synthesis of
computation or communication. However, none of these are integrated into an
overall system design flow, they don’t provide intermediate models for rapid, early
design space exploration, and they are often limited in their support for realistic
applications or architectures.

7

Copyright © 2004 A. Gerstlauer 7Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

8

Copyright © 2004 A. Gerstlauer 8Ph.D. Final Defense, 4/16/2004

Design MethodologyStructure / Space

Functional

Transaction

Gate
netlist

Bus-
functional

RTL/IS

Requirements

Untimed
(causality)

Timed
(estimated)

Gate
delays

Timing-
accurate

Cycle-
accurate

Constraints

Order / Time

Logic design, Physical design, Manufacturing

System design

Communication design

Software
design

Hardware
design

Computation design

Capture

Backend

Algor.
IP

Comm.
IP

Comp.
IP

RTOS
IP

RTL
IP

Specification model

Architecture model

Communication model

Implementation model

Application domain MOCs (Matlab, SDF, etc.)

The overall design methodology is shown here. In general, as we move down in the
level of abstraction from specification to implementation, more and more
implementation detail in the form of structure and order is added.
System design starts with the specification model that captures and unifies domain-
specific models of requirements and constraints. The specification model is a purely
functional description of the desired system behavior and it is untimed, i.e. partially
ordered based only on causality.
In the system design process, the specification is then mapped onto a set of system
components connected by system busses or other communication structures through
computation and communication design tasks. The intermediate architecture model
describes the system as a virtual architecture of processors communicating via
abstract channels, annotated with estimated processor execution delays. The
communication flow at the end of system design is a bus-functional description of
the system as a netlist of timing-accurate components connected by wires..
Finally, in the backend design process, components of the communication model
are each brought down to a cycle-accurate implementation at the RTL or
instruction-set level through hardware or software design tasks.

9

Copyright © 2004 A. Gerstlauer 9Ph.D. Final Defense, 4/16/2004

Design Process
• Synthesis = Decision making + model refinement

Successive model refinement
Layers of implementation detail

RefinementRefinement

Model nModel n

LibLib

Model n+1Model n+1

Specification modelSpecification model

Implementation modelImplementation model

Optim. algorithmOptim. algorithm

GUIGUI

Design decisions

Each of the different design tasks is then further broken down into several
successive design steps. With each step, a design model at a certain level of
abstraction is synthesized into a model at the next lower level. The result is a flow
with successive refinement of design models where a new layer of implementation
detail is added to the design in each step.
In general, synthesis of designs in each step can be separated into the two distinct
parts: making design decisions on the one hand and refining the design model to
represent the results of those decisions on the other hand.
Both parts can generally be manual or automated. To provide controllability,
transparency and observability of the design process, decisions are made under the
control of the designer through a graphical user interface or by selectively
employing automated decision making algorithms. On the other hand, with the help
of refinement tools that automatically generate design models from each other, there
is no need for tedious, error-prone manual model rewriting.

10

Copyright © 2004 A. Gerstlauer 10Ph.D. Final Defense, 4/16/2004

Specification Model

• PSM model of computation
• Abstract system functionality

• No implementation detail: untimed / no structure

Specification model

Computation design

Architecture model

Communication model

Implementation model

Communication design

Backend design

>=< RCVB ,,,ionSpecificat

relationty connectivi:)(
channels ofset :
 variablesofset :
behaviors ofset :

VCBR
C
V
B

∪×⊆

guard) (plus exclusivemutually
guard) (plus ncompositio loop pipelined

ncompositio parallel
ncompositio sequential

:
:|
:||
:

∨

>

}|,||,,{),,(∨∈ >ooB semigroup Behavior

As mentioned previously, the starting point for system design is the system
specification model. The specification model is a program state machine model of
computation. System functionality is described as a set of behaviors that
communicate through variables and abstract channels. Behaviors can be arranged
hierarchically in a sequential, parallel, pipelined or state machine fashion. Behaviors
the leaf of the hierarchy then contain basic algorithms in the form of C code.
In general, the specification model is free of any implementation detail and as such
is untimed and its behaviors do not make any implications about the structure of the
system architecture.

11

Copyright © 2004 A. Gerstlauer 11Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

In the rest of presentation, starting with compuation design, I want to focus on
compuation and communication design tasks as the main tasks of system design.
Due to time reasons, details of the backend design task are not presented here.

12

Copyright © 2004 A. Gerstlauer 12Ph.D. Final Defense, 4/16/2004

Computation Design Flow

• Partitioning (structure / space)
• Define PE, memory architecture
• Map behaviors, variables onto

PEs, memories

• Scheduling (order / time)
• Serialize behaviors on PEs
• Pre-defined, fixed order
• Dynamically under control of OS

scheduler

PartitioningPartitioning

PEPE

Specification modelSpecification model

Architecture modelArchitecture model

Partitioned modelPartitioned model

SchedulingScheduling

OSOS

Behavior partitioning
Variable partitioning

Static scheduling
Dynamic scheduling

The purpose of computation design is to implement the computation in the
specification as represented by its behaviors operating on variables on a virtual
architecture of processing elements and memories.
In a first part, the structure of the computation architecture is defined by partitioning
behaviors and variables onto PEs and memories. This requires allocation of a set of
PEs and a set of shared system memories out of the PE database. Then, behaviors
and variables have to be mapped onto those PEs and memories.
In the second part, the order of behavior execution on the inherently sequential PEs
is determined. Behaviors can be scheduled statically or dynamically. In static
scheduling, behaviors are arranged in a pre-defined, fixed order. In dynamic
scheduling, the order of behaviors is determined dynamically under the control of an
OS scheduling algorithm selected out of the OS database.

13

Copyright © 2004 A. Gerstlauer 13Ph.D. Final Defense, 4/16/2004

OS Modeling
• High-level RTOS abstraction

• Model standard RTOS concepts
– Multi-tasking, time-sharing, preemption
– Real-time scheduling
– Task synchronization & communication

• Wrap around SLDL primitives, replace event handling

• Accurate feedback at early stage
– Small overhead, low complexity
– High relative accuracy

Application

SLDL

Channels

Application

SLDL

RTOS Model

Channels

Application

SLDL

Comm. & Sync. API

ISS

RTOS

Specification Architecture Implementation

In order to properly model dynamic scheduling behavior at this high-level of
abstraction, an abstracted model of the underlying RTOS is inserted into the design.
The RTOS model describes expected RTOS behavior at a high-level without
unnecessary implementation details. It supports all the standard RTOS concepts for
multi-tasking, dynamic real-time scheduling including preemption and inter-task
communication and synchronization..
The RTOS model is implemented by wrapping around and replacing the basic event
handling primitives of the underlying SLDL. As such, it is inserted as a layer
between SLDL and application at the architecture level. As part of backend design,
in the implementation, the RTOS model is then later replaced with a real RTOS on
top of the processor’s instruction set where application channels are mapped down
onto RTOS communication primitives.
Using the RTOS model, therefore, accurate feedback about results of dynamic
scheduling of behaviors can be obtained early at this high level. The RTOS only
adds a small overhead while being able to provide relatively accurate results.

14

Copyright © 2004 A. Gerstlauer 14Ph.D. Final Defense, 4/16/2004

Specification Model Example
ControlPixel

Storage

Vocoder

HandleData

Quantization

EncodeStripeReceiveData

JPEGEncode

HfmDc HfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

mduHigh = 1..Height

mduWide = 1..Width

DCEHuffACEHuff

DCT

Huffman

JPEGEnd

JPEG

stripe[]

Voice

Radio

SpchIn

SerOut

Pre_Process

Subframes

Coder

Lp_Analysis Open_Loop

Closed_Loop

Codebook

Update

Post_Process

Ctrl

Radio

Voice

SerIn

SpchOut

Pre_Decoder

Decoder

Decode_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

inframe[160]

outparm[244]

inparm[244]

outframe[160]

txdtx_ctrl

In the following, I want to illustrate the different steps of the computation design
task using a system design example of a simplified mobile phone baseband
processor. Due to time reasons, I will only provide an overview of the design
decisions and model transformations required for each step. Details can be found in
the dissertation or can be discussed if necessary.
At the top level of its specification, the design examples runs concurrent blocks for
JPEG encoding on the left side and voice encoding/decoding on the right. Without
going into details, the JPEG encoder at its core encodes still pictures in a double-
nested pipeline. The voice encoder/decoder (Vocoder), on the other hand, runs
encoding and decoding tasks in parallel.

15

Copyright © 2004 A. Gerstlauer 15Ph.D. Final Defense, 4/16/2004

PE Model Example

PE layer, Behavior grouping, Synchronization, Timing

Codebook

DCT

st
rip

e[
]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara
HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
rip

eL
en

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

H
D

at
a

D
D

at
a

SpchIn

SerIn

DSP

BI

SI

Decoder

Coder

SpchOut

SerOut
BO

SO

DCT_Start

DCT_Done

inparm

inframe

outparm

txdtx_ctrl

outframe

During behavior partitioning, an additional layer of behaviors representing allocated
PEs (shown in red) is inserted, original specification behaviors are grouped under
PE behaviors according the selected mapping, synchronization behaviors and
channels are inserted to preserve execution semantics and leaf behaviors are
annotated with estimated execution delays. Not that as a consequence, shared
variables become system-global variables between PEs.

16

Copyright © 2004 A. Gerstlauer 16Ph.D. Final Defense, 4/16/2004

Partitioned Model Example

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara
HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
rip

eL
en

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

Decoder

Coder

SpchOut

SerOut
BO

SO

outframe

outparm

txdtx_ctrl

Memory layer, Variable grouping, Message passing, Memory access

During variable partitioning, a new layer of memory behaviors is inserted, variables
are grouped under the memories according to the selected mapping, variable
accesses are refined into memory accesses and remaining global variables are
distributed into local PE memories and synchronization is updated to exchange
updated data values via message passing.

17

Copyright © 2004 A. Gerstlauer 17Ph.D. Final Defense, 4/16/2004

Scheduled Model Example

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
rip

eL
en

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

Decoder

Coder

SpchOut

SerOutoutframe

outparm

BO

SO

txdtx_ctrl

Behavior serialization, flattening, and reordering

During static scheduling, selected concurrent behaviors are serialized, if necessary
parts of the behavior hierarchy are flattened and child behaviors are re-arranged in
the selected execution order.

18

Copyright © 2004 A. Gerstlauer 18Ph.D. Final Defense, 4/16/2004

Architecture Model Example

Codebook

DCT

stripe[]

Pre_Decoder

Dec_Lsp

Decoder_
Subframe

Post_Decoder

Post_Filter

im
gS

iz
e

DCEHuffACEHuff

JPEGEnd

JPEGEncode

SndRcvPara

HandleData

Quantization

EncodeStripe

Huffman

SendHData

RecvDData

JPEGInit

st
rip

eL
en

Pre_Process

Subframes

Lp_Anal

Open_Lp

Closed_Lp

Update

Post_Process

Cdbk_Start
Cdbk_Done

Cdbk_Start

Cdbk_Done

exc[40]

T0

prm[10]

gain

CF_OS

Mem

DMA

HW

DCT_IP

ReceiveData

RcvPara

SndPara

Ctrl

ColdFire

HData

DData

inframe SpchIn

SerIninparm

DSP

BI

SI

DSP_OS

Decoder

Coder

SpchOut

OSModel
SerOutoutframe

outparm

BO

SO

txdtx_ctrl

OS layer + OS model, Task creation, Timing and synchronization refinement

Finally, during dynamic scheduling, an OS layer that includes the selected OS
model is inserted around each programmable PE, any remaining concurrent
behaviors are turned into OS tasks, and timing and synchronization inside tasks is
replaced with corresponding OS model primitives.

19

Copyright © 2004 A. Gerstlauer 19Ph.D. Final Defense, 4/16/2004

Architecture Model

• Computation structure
• Non-terminating, concurrent PEs
• Sequential, timed PE behaviors

• Abstract communication
• Untimed message-passing
• Shared memory variable accesses

Specification model

Architecture model

Communication model

Implementation model

Backend design

Computation design

Communication design

>=< RCPE ,,reArchitectu

relationty connectivi system:)(
channels system ofset :

elements processing ofset :

ACBR
C

MIPPPE

∪×⊆

∪∪=

>=<∈∀ pppp RCVBpPp ,,,: processor

>=<∈∀ ipipip AVBipIPip ,,: IP

>=<∈∀ mm AVmMm ,:memory

The result of computation design is the architecture model. The architecture model
describes the system computation structure as a virtual architecture of non-
terminating, concurrent PEs communicating via abstract channels or shared memory
accesses. Each PE in turn is described as a set of local behaviors connected by local
variables and channels.

20

Copyright © 2004 A. Gerstlauer 20Ph.D. Final Defense, 4/16/2004

Mapping of 8 top-level encoder behaviors onto ColdFire + DSP + HW
85:04h for 6561 alternatives (1.7s simulation + 3s refinement each)
100% fidelity

HW (144.1, 12.24 ms)

SW (20.0, 30.73 ms)

10 ms

15 ms

20 ms

25 ms

30 ms

35 ms

10 30 50 70 90 110 130 150 170

Cost

Tr
an

sc
od

in
g

de
la

y

Vocoder PE Exploration

In order to demonstrate the effectiveness of the architecture model for computation
design space exploration, we did several experiments to explore different aspects of
the design space for the voice encoder/decoder that is part of the design example.
The graph here shows exploration of the Vocoder PE design space. Using the the
scripting capabilities of the design environment, we ran an exhaustive search of all
possible mappings of the 8 top-level encoder behaviors onto a Motorola Coldfire
processor, a Motorola DSP and a custom hardware co-processor. We assumed fixed
costs for the processors and a linear cost function for the hardware. For each
alternative, an architecture model was generated and simulated to obtain results for
the transcoding delay. The complete generation and analysis for all 6561
alternatives was finished within a few days, showing that even exhaustive, brute-
force searches become possible.
As expected, a pure software solution is the cheapest but slowest design whereas a
pure hardware solution is the fastest design at a high cost. Comparing exploration
results to estimates of an actual implementation of the design, results show a 100%
relative accuracy, so-called fidelity. Using the results, we can therefore prune large
parts of the design space and focus further design efforts on the pareto-optimal
solutions near the transcoding delay constraint.

21

Copyright © 2004 A. Gerstlauer 21Ph.D. Final Defense, 4/16/2004

Vocoder OS Exploration

• Modeling effort
• Automatic scheduling refinement: seconds
• Manual scheduling refinement: < 1 h

– 104 lines of code added / changed (< 1%)

• Implementation: weeks

 Modeling Simulation

 Lines of
code

Simulation
Time

Context
switches

Transcoding
delay

Partitioned 12,601 16.7 s 0 9.37 ms
Round-robin 13,920 18.1 s 64 10.9 ms
Decoder > Encoder 13,939 17.8 s 2 10.2 ms
Encoder > Decoder 13,939 17.8 s 8 11.3 ms
Implementation ~ 115,500 ~ 5 h 2 10.7 ms

In another experiment, we evaluated different dynamic scheduling strategies for the
encoding and decoding tasks in the Vocoder. Using the OS model, we created
architecture models with round-robin and priority-based schedulers with different
relative priorities. Results confirm expectations that round-robin scheduling results
in low latencies while incurring a lot of context switches. On the other hand, since
the decoder has a lower complexity than the encoder, a scheduling strategy in which
the decoder has a higher priority than the encoder has the lowest latency and the
lowest number of contect switches as it corresponding to a shortest-job-first.
Again, using automatic model refinement tools, all three design alternatives could
be generated and simulated within seconds. Compared to actual implementations of
the Vocoder on top of real RTOSes which would require weeks to implement, we
can explore a much larger part of the design space in a much shorter amount of
time.

22

Copyright © 2004 A. Gerstlauer 22Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

23

Copyright © 2004 A. Gerstlauer 23Ph.D. Final Defense, 4/16/2004

Communication Design Flow

• Network design (structure / space)
• Define network topology
• Merge channels into streams
• Route end-to-end streams over

point-to-point network links

• Link design (order / time)
• Group logical into physical links
• Implement links over shared

media, protocols, wires

Network DesignNetwork Design

Network
protocols

Network
protocols

Architecture modelArchitecture model

Communication modelCommunication model

Link modelLink model

Comm. Link DesignComm. Link Design

Media
protocols

Media
protocols

Protocol modelProtocol modelMAC modelMAC model

Channel streaming
Network segmenting

Link grouping
Media interfacing

After computation design, communication design deals with the implementation of
abstract communication channels over actual busses or other communication
structures.
Similar to computation design, communication design consist of two parts. First, the
topology of the communication network is defined and the end-to-end channels are
merged into untyped byte streams and routed over the network of point-to-point
logical links.
In the second part of communication design, logical point-to-point links between
network stations are then implemented over shared physical media by grouping
them into physical links and by implementing media, protocol and finally wire level
interfaces for each physical link in each network station.
In addition to the final communication model that is handed off to the backend
design task, communication design can output intermediate, transaction-level media
access and protocol models. As will be shown later, abstract TLMs allow rapid
design space exploration by trading off model accuracy and model complexity.

24

Copyright © 2004 A. Gerstlauer 24Ph.D. Final Defense, 4/16/2004

Architecture Model Example

RcvData

Co-process

SpchOut

DCT

stripe[]
Decoder

JPEG Coder

OSModel

SerOut

SpchIn

SerIn

DSP
CF_OS

Mem

DMA

HW

DCT_IP

BI

BO

SO

SICtrl

ColdFire

DSP_OS

D
C

TA
da

pt
er

Vocoder

Recalling the architecture model at the output of computation design,
communication design starts at this point.

25

Copyright © 2004 A. Gerstlauer 25Ph.D. Final Defense, 4/16/2004

Transport Model Example

CF_OS
ColdFire

DMA

Mem

char[]

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

SI

BI

SO

BO

M
S

D
C

TA
da

pt
er

tr
an

sD
M

A

transBri

transBI

transHW

transSI

transBO

transSO

Data conversion, Channel merging

During channel streaming, presentation and session layers are inserted to implement
conversion of abstract data types into network bytes and to merge channel into a set
of streams between PEs. As part of data conversion, memory behaviors are refined
to a byte-accurate representation of their data layout.

26

Copyright © 2004 A. Gerstlauer 26Ph.D. Final Defense, 4/16/2004

Link Model Example

CF_OS
ColdFire

DMA
DMA_HW

DCT

DCT_IP

M

S

DSP_OS

DSP

OSModel

HW

SI

SI_HW

BI

BI_HW

SO
SO_HW

BO
BO_HW

Bridge

M
SlinkBri

l

D
C

TA
da

pt
er

lin
kD

M
A

linkBri
linkBI

linkHW

linkSI

linkBO

linkSO

Mem

Transducer insertion, Packeting, Routing

During network segmenting, transducers are inserted to divide and bridge the
network into several segments, splitting end-to-end channels into point-to-point
links as necessary. Inside PEs and transducers, transport and network layers are
inserted to perform the necessary packeting and routing.

27

Copyright © 2004 A. Gerstlauer 27Ph.D. Final Defense, 4/16/2004

Stream Model Example

sy
nc

D
M

A

lD
C

T
lD

M
A

lB
ri

CF_OS
ColdFire

DMA

lin
k

DMA_HW

Mem

Mem_HW

DCT

DCT_IP

D
C

TA
da

pt
er

st
rm

D
M

A

M

S

shm

DSP_OS

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

OSModel

HW

lin
k

H
W

_H
W

SI

lin
k

SI_HW

BI

lin
k

BI_HW

SO

lin
k

SO_HW

BO

lin
k

BO_HW
lin

k

Bridge

M
S

syncBI

strmBIM S

syncSI

strmSI

M S

syncHW

strmHW
M S

syncBO

strmBO

M S

syncSO

strmSOM S

lin
k

syncBri

strmBriS M

syncBri

strmBri

M S

Synchronization

As a first step of link grouping, links are split into separate control and data streams
based on the type of bus interface of each link. Link layers that implement
synchronization over control channels around each data transaction are inserted.

28

Copyright © 2004 A. Gerstlauer 28Ph.D. Final Defense, 4/16/2004

Media Access Model Example

D
C

T

sB
ri

sD
M

A
sD

C
T

D
M

A
B

ri
sh

m

CF_OS

A
D

D
R ColdFire

DMA

st
rm

sh
m

DMA_HW
A

D
D

R

Mem

sh
m

Mem_HW
A

D
D

R

DCT

DCT_IP

cfBusMaster

cfBusSlave

cf
B

us

T_
H

W

dctBus

DSP_OS

DSP C
tr

l
B

I
SI

H
W

B
O

SO

sC
tr

l
sB

I
sS

I
sH

W
sB

O
sS

O

iS
I A

D
D

R

iH
W

iB
O

iS
O

iB
I

iC
tr

l

OSModel

HW

st
rm

A
D

D
R

H
W

_H
W

SI

st
rm

A
D

D
R

SI_HW

BI

st
rm

A
D

D
R

BI_HW

SO

st
rm

A
D

D
R

SO_HW

BO

st
rm

A
D

D
R

BO_HW

st
rm

ADDR

Bridge

dspB
usM

aster

dspB
usSlave

dspBus

st
rm

ADDR

Multiplexing, Addressing, Interrupt tasks

In the second step of link grouping, data streams in each segment are then
multiplexed over a shared medium channel. Stream layers that perform the
necessary media addressing are inserted into the components. In addition, interrupt
tasks that communicate with bus drivers through semaphores are inserted to
implement control transactions.

29

Copyright © 2004 A. Gerstlauer 29Ph.D. Final Defense, 4/16/2004

Protocol Model Example

m
em

m
ac

CF_OS
CF_HAL

A
D

D
R ColdFire

DMA

m
ac

m
em

DMA_HW
A

D
D

R

Mem

m
em

Mem_HW

A
D

D
R

DCT

DCT_IP

i_semaphore

Arbiter

cfMaster

cfSlave

cf
Pr

ot
oc

ol

T_
H

W

DSP_OS

D
SP

_H
A

L

DSP

A
D

D
R

OSModel

m
ac

intA intB intC intD

HW

m
ac

A
D

D
R

HW_HW

SI

m
ac

A
D

D
R

SI_HW

BI

m
ac

A
D

D
R

BI_HW

SO

m
ac

A
D

D
R

SO_HW

BO

m
ac

A
D

D
R

BO_HW

m
ac

A
D

D
R

Bridge

dspM
aster

dspSlave

dspProtocol

m
ac

A
D

D
R

poll POLL_ADDR

poll POLL_ADDR

poll POLL_ADDR

poll POLL_ADDR

Hardware abstraction layer (HAL), Arbitration, Data slicing,
Interrupt handling

In the first step of implementing media interfaces, media access layers are inserted
into components to implement arbitration through arbitration channels and slicing of
data packets into bus words/frames transactions over protocol channels. For
programmable PEs, media access layers become part of a newly added hardware
abstraction layer that will mark the boundary between the PE’s software and
hardware. Finally, interrupt handlers are created inside the hardware abstraction
layers to implement low-level control transactions including slave polling in case of
interrupt sharing.

30

Copyright © 2004 A. Gerstlauer 30Ph.D. Final Defense, 4/16/2004

CF_BF

D
C

T

sB
ri

sD
M

A
sD

C
T

lD
C

T

D
M

A

lD
M

A

B
ri

lB
ri

sh
m

ISR

m
em

m
acm

as
te

rP
ro

to
co

l
ar

bi
tr

at
rio

n

ctrl

stripeLen

imgSize

stripe

HData

DData

MWData[31:0]
MRData[31:0]
MAddr[31:0]

MTSB
MTAB

MWDataOE
MRWB

PIC

CF_OS
CF_HAL

CF_HW

A
D

D
R ColdFire

MSIZ[1:0]
MTT[1:0]
MTM[2:0]

IPLB[2:0]

stripeLen

imgSize

stripe

DMA

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

m
as

te
rP

ro
to

co
l/

 s
la

ve
Pr

ot
oc

ol

m
ac

st
rmlin
k

in
t

ar
bi

tr
at

rio
nm

em

sh
m

DMA_BF

A
D

D
R

A
D

D
R

Mem

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

sl
av

eP
ro

to
co

l

m
em

sh
m

Mem_BF
A

D
D

R

char[]

DCT

DCT_IP

DB[31:0]
Addr[31:0]

TSB
TAB

RWB

intDCT

MWData[31:0]
MRData[31:0]
MAddr[31:0]
MTSB
MTAB
MWDataOE
MRWB
MSIZ[1:0]
MTT[1:0]
MTM[2:0]

M
A

P
1

M
D

P
1

M
A

H
1

M
A

P2
M

D
P

2
M

A
H

2

Arbiter

sl
av

eP
ro

to
co

l

dc
tP

ro
to

co
l

T_BF

MAP2
MDP2
MAH2

intDCT

sl
av

eP
ro

to
co

l

MWData[31:0]
MRData[31:0]

MAddr[31:0]
MTSB
MTAB

MWDataOE
MRWB

MSIZ[1:0]
MTT[1:0]
MTM[2:0]

in
t

m
ac

st
rm lin
k

Bridge

A
D

D
R

Communication Model Example (1)

Hardware layer, Protocol insertion, Interrupt routing

Finally, timing-accurate bus-protocol implementations are inlined into the system
components, exposing the underlying bus wires. For programmable PEs, hardware
models are inserted that accurately describe the PE’s interrupt handling behavior.
Finally, bus-functional arbiter and interrupt controller models are inserted and
connected.

31

Copyright © 2004 A. Gerstlauer 31Ph.D. Final Defense, 4/16/2004

D
SP

_B
F

PIC

DSP_OS

D
SP

_H
A

L D
SP

_H
W

DSP lC
tr

l
lH

W
lB

I
lB

O
lS

O
lS

I

C
tr

l
B

I
SI

H
W

B
O

SO

sC
tr

l
sB

I
sS

I
sH

W
sB

O
sS

O

iS
I A

D
D

R

iH
W

iB
O

iS
O

iB
I

iC
tr

l

OSModel

m
ac

intA intB intC intD

m
as

te
rP

ro
to

co
l

ISR

A[15:0]
D[23:0]
MCS
nRD
nWR

HW

exc[40]

T0

gain

prm[10]

exc[40]
T0

gain
prm[10]

inframe

outparm

inparm

outframe

lin
k

st
rm

m
ac

sl
av

eP
ro

to
co

l A
D

D
R

A[15:0]
D[23:0]

MCS
nRD
nWR

in
t

HW_BF

SI
inframelin

k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

SI_BF

BI
inparmlin

k

st
rm

m
ac

sl
av

eP
ro

to
co

l

ADDR,
POLL_ADDRA[15:0]

D[23:0]
MCS
nRD
nWR

po
ll

BI_BF

SO

outframelin
k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

in
t

SO_BF

BO

outparmlin
k

st
rm

m
ac

sl
av

eP
ro

to
co

lA[15:0]
D[23:0]

MCS
nRD
nWR

in
t

BO_BF

Bridge

sl
av

eP
ro

to
co

l

m
ac

st
rmlin
k

in
t

A
D

D
R

A[15:0]
D[23:0]
MCS
nRD
nWR

in
t

ADDR,
POLL_ADDR

po
ll

in
t

ADDR,
POLL_ADDR

po
ll

ADDR,
POLL_ADDR

po
ll

INTR

Communication Model Example (2)

32

Copyright © 2004 A. Gerstlauer 32Ph.D. Final Defense, 4/16/2004

Communication Model

• System architecture
• Computation & communication structure
• Timed, bus-functional

Specification model

Architecture model

Communication model

Implementation model

Backend design

Communication design

Computation design

>∪=< cWCEPE ,,ionCommunicat

function mappingport :
 wiresbus ofset :

elementsion communicat ofset :
elements processing ofset :

)(WOc
W

ICATCE
MIPPPE

pCEPEp aU ∪∈

∪∪=
∪∪=

>=<∈∀ pppppp RODCVBpPp ,,,:processor functional-bus ,,

relationty connectivi local:)(
ports PE ofset :
drivers bus ofset :

channels local ofset :
behaviors ofset :

pppp

p

p

p

p

DCBR
O
D
C
B

∪×⊆

The result of communication design is the communication model. It is a bus-
functional, timing-accurate description of the complete computation and
communication system architecture. The communication model is a netlist of
processing and communication elements connected via bus wires. Each bus-
functional component in turn is described as a set of local behaviors, variables,
channels, bus drivers and ports.

33

Copyright © 2004 A. Gerstlauer 33Ph.D. Final Defense, 4/16/2004

Communication Modeling
• Simulation overhead vs. accuracy

1.0

10.0

100.0

Arch Link Stream MAC Protocol Comm

N
or

m
al

iz
ed

 s
im

ul
at

io
n

tim
e

System

Vocoder

JPEG

0

0.2

0.4

0.6

0.8

1

1.2

Arch Link Stream MAC Protocol CommN
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

de
la

ys

Transcoding

JPEG

Benefits and trade-offs in terms of model complexities vs. model accuracies for
communication models at different levels of abstraction are shown here. The graphs
show simulation runtimes on a logarithmic scale and communication delays
measured by setting computation delays to zero and normalized against the
communication delay in the final implementation.
As can be expected, generally simulation runtimes grow exponentially whereas
accuracies grow linearly with lower levels of abstraction, clearly demonstrating the
benefits of high-level models. As can bee seen, the protocol model can provide up
to 80% accuracy at significantly higher simulation speeds. The protocol model
includes data slicing and bus arbitration needed to accurately model delays in the
presence of interleaved transactions of multiple masters on the bus. On the other
hand, if no arbitration is present, as in the case of the Vocoder subsystem, the MAC
model can potentially provide relatively accurate data. In the Vocoder case, delay
inaccuracies in the MAC model are introduced due to the fact that slave polling is
not included in the MAC model. If the design does neither require arbitration nor
slave polling, the MAC model would be even more accurate. Note that since the
MAC model lumps several all bus transfers within a packet into a single transaction,
simulation speeds are disproportionally higher compared to the protocol model.
All in all, results confirm the choice of both MAC and protocol models for
communication design space exploration depending on the selected target
architecture.

34

Copyright © 2004 A. Gerstlauer 34Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

The design flow has been implemented in the form of the SoC design environment.

35

Copyright © 2004 A. Gerstlauer 35Ph.D. Final Defense, 4/16/2004

SoC Environment (SCE) Validation
User Interface (VUI)

Specification model

Architecture model

Communication model

Arch. refinement

Comm. refinement

HW/SW refinement

Implementation model

Capture

Design decisions

Design decisions

Design decisions

PE Allocation

Beh. Mapping

Task Scheduling

Refinement
User Interface (RUI)

CE Allocation

Net. connectivity

Spec. optimization

Channel routing

RTL / OS
comp.RTL synthesis

Protocol synthesis

RTOS targeting

Browsing

Alg. selection

Comp. / IP
attributes

Protocol
attributes

Profile

Simulate

Verify

Compile

Estimate

Simulate

Verify

Estimate

Simulate

Verify

Simulate

Verify

Estimation

Profiling

Profiling data

Profiling
weights

Estimation results

Estimation

Estimation results

Protocol
models

Comp. / IP
models

Arch. synthesis

Comm. synthesis

HW/SW synthesis

Synthesize

Synthesize

Synthesize

The overall architecture of the SoC design environment is shown here. As part of
this work, the design environment’s general framework including architecture, tool
flow, databases, and interfaces has been developed. Tools for automatic model
refinement have been integrated into the design environment, enabling generation of
complete designs within minutes. The design environment supports automated
decision making through a plug-in mechanism such that the design can selectively
apply algorithms to all or part of a design at any time. Finally, graphical user
interfaces for model visualization and decision entry have been developed that aid
and steer the designer in the exploration process.

36

Copyright © 2004 A. Gerstlauer 36Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Design methodology

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

In the following, I will show results obtained by applying the design flow to the
example design presented throughout this presentation. In general, results have been
obtained for the overall system and for both Vocoder and JPEG encoder subsystems
design separately.

37

Copyright © 2004 A. Gerstlauer 37Ph.D. Final Defense, 4/16/2004

Model Complexities

0

5000

10000

15000

20000

25000

30000

Spe
c PE

Part

Sch
ed

Arch Lin
k

Stre
am MAC

Prot

Comm
RTL/C

Li
ne

s
of

 c
od

e
(L

O
C)

Baseband
Vocoder
JPEG

Model complexities as measure by the number of lines of code for models of
different designs at different levels are shown here. As expected, models generally
grow linearly with lower levels of abstraction. At the RTL level, however, model
sizes grow exponentially due to the high overhead necessary for cycle-accurate state
machine modeling where growth depends to a large extend on the size of the
hardware part.
Note that model growth does not depend on the size of the original specification.
Rather, model complexities grow depending on the complexity of the target
architecture and hence the necessary implementation detail to be added.

38

Copyright © 2004 A. Gerstlauer 38Ph.D. Final Defense, 4/16/2004

Simulation Runtimes

0.1

1

10

100

1000

Spe
c PE

Part

Sch
ed

Arch Lin
k

Stre
am MAC

Prot

Comm
RTL/C

No
rm

al
iz

ed
 s

im
ul

at
io

n
tim

e

Baseband Vocoder JPEG

In terms of simulation overhead, it can be seen that all throughout computation
design, almost no additional overhead is introduced. Only in the link design phase,
simulation runtimes start growing exponentially as explained earlier during
communication modeling. Again, exponential growth of runtimes during backend
design depends exclusively on the relative size of the hardware part in the design.

39

Copyright © 2004 A. Gerstlauer 39Ph.D. Final Defense, 4/16/2004

Model Accuracies

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Spec PE Part Sched Arch Link Stream MAC Prot Comm RTL/C

No
rm

al
iz

ed
 s

im
ul

at
ed

 d
el

ay

Transcoding JPEG encoding

Finally, looking at accuracies of models at different levels of abstraction, results
confirm the choice of the architecture model as intermediate model for exploration,
especially considering the fact that no additional simulation overhead is introduced
up to this point. For the designs shown here, the architecture model is over 80%
accurate. PE and partitioned models are generally not accurate enough as they
ignore the effects of sequential execution on PEs.

40

Copyright © 2004 A. Gerstlauer 40Ph.D. Final Defense, 4/16/2004

Outline

• Introduction

• Computation design

• Communication design

• Design environment

• Experimental results

• Summary and conclusion

41

Copyright © 2004 A. Gerstlauer 41Ph.D. Final Defense, 4/16/2004

Contributions
• Systematic, structured, well-defined system design flow

• Specification to implementation
• Computation, communication, backend design tasks
• Support for realistic applications, target architectures

• Defined abstraction levels, models
• PE, memory, IP modeling for computation abstraction
• OS model for dynamic scheduling abstraction
• Communication abstractions at several levels

• Defined design steps
• Design decisions + model transformations

• Identified intermediate models for exploration
• Reliable feedback about critical issues at early stages

• Defined interactive system design framework
• Tool flow, databases, architecture, interfaces
• Graphical user interfaces for decision entry + model visualization

Productivity gains
• Automation of model refinement and decision making
• Rapid, early design space exploration

In summary, the main contribution of this work is the definition of a complete
system design flow in a structured, systematic manner. Starting from an abstract,
functional specification, a cycle-accurate implementation is derived through
computation, communication and backend design tasks. The flow supports a wide
variety of realistic applications and target architectures.
We defined abstraction levels and corresponding design models breaking the design
flow into individual steps. PE, memory, IP and OS models for computation
abstraction have been developed. Communication abstractions at several levels have
been defined.
For each design step, necessary design decisions and model transformations have
been defined. Furthermore, intermediate models for reliable, rapid and early design
space exploration have been identified.
The design flow has been implemented in the form of a SoC design environment.
The general framework of the design environment including tool flow, databases,
architecture and interfaces has been defined. Furthermore, graphical user interfaces
for decision entry and model visualization have been developed.
In conclusion, following this design flow, required productivity gains can be
achieved. Steps have been defined such that decision making and model refinement
can be automated. Together with design automation, abstract models at high levels
enable rapid exploration of large parts of the design space in short amounts of time.

42

Copyright © 2004 A. Gerstlauer 42Ph.D. Final Defense, 4/16/2004

Selected Publications
• Books

• A. Gerstlauer, R. Dömer, J. Peng, D. Gajski, “System Design: A Practical
Guide with SpecC”, Kluwer, 2001.

• D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, “SpecC: Specification
Language and Methodology”, Kluwer, 2000.

• Book chapters
• A. Gerstlauer, H. Yu, D. Gajski, “RTOS Modeling for System-Level Design”,

Embedded Software for SoC, Kluwer, 2003.
• A. Rettberg, F. Rammig, A. Gerstlauer, D. Gajski, W. Hardt, B. Kleinjohann,

“The Specification Language SpecC within the PARADISE Design
Environment”, Architecture and Design of Distributed Embedded Systems,
Kluwer, 2001.

• Conference Papers
• L. Cai, A. Gerstlauer, D. Gajski, “Retargetable Profiling for Rapid, Early

System-Level Design Space Exploration”, DAC 2004.
• A. Gerstlauer, H. Yu, D. Gajski, “RTOS Modeling for System-Level Design”,

DATE 2003.
• A. Gerstlauer, D. Gajski, “System-Level Abstraction Semantics”, ISSS 2002.
• W. Mueller, R. Dömer, A. Gerstlauer, “The Formal Execution Semantics of

SpecC”, ISSS 2002.
• A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, “SpecC System-Level Design

Methodology Applied to the Design of a GSM Vocoder”, SASIMI 2000.

43

Ph.D. Final Defense, 4/16/2004

Backup Slides

44

Copyright © 2004 A. Gerstlauer 44Ph.D. Final Defense, 4/16/2004

Behavior Partitioning
• Design decisions

• PE allocation and selection
–

• Behavior mapping
–

• Model transformations
• PE layer

– Additional layer of behavior hierarchy representing PEs

• Grouping
– Group behaviors under PEs according to mapping

• Synchronization
– Insert synchronization to preserve transition semantics

• Timining refinement
– Annotate behaviors with estimated execution delays

 tuples),(ofset typenamePE =

PEBmb a:function mapping

45

Copyright © 2004 A. Gerstlauer 45Ph.D. Final Defense, 4/16/2004

Variable Partitioning
• Design decisions

• Memory allocation and selection
–

• Variable mapping
–

• Model transformations
• Memory layer

– Insert behaviors representing shared memories

• Grouping
– Group global variables under shared memories according to mapping

• Message passing
– Distribute unmapped global variables, insert message passing

• Memory accesses
– Create memory interface, update shared variables accesses

 tuples),(ofset typenameM =

MVVm sv a⊆:function mapping

46

Copyright © 2004 A. Gerstlauer 46Ph.D. Final Defense, 4/16/2004

Static Scheduling

• Design decisions
• Behavior order

–

• Model transformations
• Serialization

– Sequentialize concurrent behavior compositions

• Flattening
– Move children into parent behavior as requested

• Reordering
– Arrange behaviors in selected execution order

children ofset orderedtotally schedule:, =⊆∈∀ bss SBBBb

47

Copyright © 2004 A. Gerstlauer 47Ph.D. Final Defense, 4/16/2004

Dynamic Scheduling
• Design decisions

• Scheduling algorithm selection
–

• Task priority assignment
–

• Model transformations
• OS layer

– Additional OS layer around programmable PEs
– Insert abstract OS model for selected scheduling strategy

• Task creation
– Turn concurrent behaviors into OS tasks

• Task refinement
– Replace delay primitives

• Synchronization refinement
– Replace event handling primitives

OSPEos algorithms ofset :function selection OS a

+Ζ⊆ aBBp t:function priority task

48

Copyright © 2004 A. Gerstlauer 48Ph.D. Final Defense, 4/16/2004

Channel Streaming
• Design decisions

• Network byte layout
–

• Channel merging
–

• Model transformations
• Presentation layer

– Conversion of abstract data types into network bytes
– Memory data byte layout

• Session layer
– Merge channels into message streams

),,()(},l,b{
: typesdataover function layout

** endianessalignmentsizedlD
Ddl

=×Ζ×Ζ

∈

a

SCm sc streams ofset channels ofset :function merging a

49

Copyright © 2004 A. Gerstlauer 49Ph.D. Final Defense, 4/16/2004

Network Segmenting
• Design decisions

• Transducer allocation
–

• Channel routing & packeting
–
–

• Model transformations
• Transport layer

– Splitting of message streams into packet streams
– Flow control, error correction

• Network layer
– Insert transducers and links
– Routing of packets over links between PEs and transducers

)(hops ofset ordered route : stream TPErRSs s ∪∈=∈∀

 tuples),(ofset typenameT =

sizepacketspSp =Ζ+)(,:function packet a

50

Copyright © 2004 A. Gerstlauer 50Ph.D. Final Defense, 4/16/2004

Link Grouping
• Design decisions

• Bus/protocol allocation
–

• Station connectivity
–
–

• Link parameters
–

• Model transformations
• Link layer

– Splitting of links into control and data transactions

• Stream layer
– Multiplexing of data over media transaction via media addressing
– Implementation of interrupt tasks for control transactions

BUSTPEN ×∪⊆)(relation ty connectivi

 tuples),(ofset typenameBUS =

),,,()(,
:function parameter , links

* intraddrdstsrclmNNL
mLl

=Ζ×Ζ××

∈∀
+a

IFNif typesinterface :function typeconnection a

51

Copyright © 2004 A. Gerstlauer 51Ph.D. Final Defense, 4/16/2004

Media Interfacing
• Design decisions

• Arbiter allocation, bus master priority assignment
–
–

• Interrupt controller allocation, bus slave interrupt assgn.
–
–

• Model transformations
• Media access layer, hardware abstraction layer (HAL)

– Slicing of data packets into media words/frames, media arbitration
– Implementation of interrupt handlers, slave polling

• Protocol layer, hardware layer
– Protocol transaction timing for sampling/driving wires
– Insert programmable PE interrupt hardware model
– Insert, connect arbiters and interrupt controllers

BUSAtypenameA a:tyconnectivi tuples,),(ofset =
*:function priority master bus Ζ⊆ aNMASTERa

PEICtypenameIC aty connectivi tuples,),(ofset =

interrupts ofset :function interrupt slave bus aNSLAVEi ⊆

