
ECE12: Introduction to Programming
Lecture 14

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 2

Lecture 14: Overview

• Object-oriented Programming
– Introduction
– Concepts and Terminology

• Class
• Object

– Example: cl ass Ti me
• Class definition
• Documentation strings
• Constructor
• Data members
• Methods

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 3

Object-Oriented Programming

• Introduction
– Before: Structured Programming

• Literals, identifiers, types, expressions
• Statements, control flow, functions
• Procedural programming, action-oriented

– Now: Object-Oriented Programming (OOP)
• Classes
• Objects

• Background
– The real world is composed of objects

• people, animals, plants, cars, planes, buildings, ...
– An object can be seen as an abstraction of its components

• we see objects on a screen (not a bunch of pixels)
• we see a beach (rather than grains of sand)
• we see a forest (rather than trees)
• we see buildings (rather than bricks)

– A class is like a blue-print for an object

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 4

Object-Oriented Programming

• Concepts and Terminology
– Object

• Abstraction, model of real-world object
• Has attributes

– name, size, color, weight, ...
• Exhibits behavior

– people sleep, eat, walk, talk, ...
• Uses communication

– message passing

– Class relationship
• Classes of objects have the same characteristics

– Class automobile contains
» sports car, limousine, pick-up, truck, ...

• Inheritance (multiple inheritance)
– A convertible is a sports car with a removable roof
– A convertible is also an automobile

• Classes of objects are derived from existing classes
and add characteristics of their own

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 5

Object-Oriented Programming

• Key concepts
– Hierarchy
– Encapsulation

• Attributes: data members
• Behavior: function members, methods
• Interfaces: communication attributes and methods

– Information hiding
– Reuse

• Terminology
– Object

• Instance of a class
• Instantiation: creation of an object of a class
• Destruction: deletion of an object

– Class:
• Abstract data type (ADT)

– aka. user-defined type
• Constructor: creation of objects
• Destructor: deletion of objects

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 6

Object-Oriented Programming

• Example: cl ass Ti me
– Program t i me1. py (part 1/2)

t i me1. py: abst r act dat a t ype f or r epr esent at i on of t i me
(ver si on 1)
aut hor : Rai ner Doemer
02/ 17/ 04 RD i ni t i al ver si on (s i mi l ar t o f i gur e 7. 1)

cl ass def i ni t i on
cl ass Ti me:

" " " abst r act dat a t ype f or r epr esent at i on of t i me" " "

def __i ni t __(sel f) : # const r uct or
" " " cr eat es a t i me obj ect i ni t i al i zed t o 12am" " "
sel f . hour = 0 # 0- 23 # dat a member s
sel f . mi nut e = 0 # 0- 59
sel f . second = 0 # 0- 59

def Pr i nt (sel f) : # met hod
" " " pr i nt s t he val ue of a t i me obj ect " " "
pr i nt " %02d: %02d: %02d" % \

(sel f . hour , sel f . mi nut e, sel f . second)
. . .

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 7

Object-Oriented Programming

• Example: cl ass Ti me
– Program t i me1. py (part 2/2)

. . .
def Pr i nt AMPM(sel f) : # met hod

" " " pr i nt s t he t i me i n am/ pm not at i on" " "
h = sel f . hour % 12
i f h == 0:

h = 12
i f sel f . hour < 12:

ampm = " am"
el se:

ampm = " pm"
pr i nt " %2d: %02d: %02d %s" %\

(h, sel f . mi nut e, sel f . second, ampm)

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 8

Object-Oriented Programming

• Example: cl ass Ti me
– Notes (1):

• Class definition consists of
– Class header (keyword cl ass , identifier Ti me, colon)

– Class body (indented block of attributes and methods)
» contains methods __i ni t __, Pr i nt , and Pr i nt AMPM

• Documentation strings
– Triple-quoted strings (by convention)
– Inserted between header and body

– Optional for modules, functions, classes, methods
– Available in attribute __doc__ for inspection

• Class constructor __i ni t __

– Special method for object initialization
» creates and initializes attributes hour , mi nut e, and second

– Called implicitly whenever an object of the class is created
– Must not return any value (None)

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 9

Object-Oriented Programming

• Example: cl ass Ti me
– Notes (2):

• Object reference sel f

– Aka. object reference argument or class instance object
– Called sel f by convention

– First (explicit!) argument of every class method

– Implicitly supplied when a method of an object is called
– in C++, sel f is called t hi s

• Class methods
– functions that operate on an object

» Pr i nt , Pr i nt AMPM

– require first argument sel f which represents the object

– sel f is used to access the attributes
» sel f . hour

» sel f . mi nut e

» sel f . second

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 10

Object-Oriented Programming

• Example: cl ass Ti me
– Notes (3):

• Class namespace
– Every class has its own namespace
– Contains class attributes and class methods

(which are shared among all instances of the class)

– Access by use of dot-operator
» from inside the class: through object reference sel f

» from outside the class: through class name

• Object namespace
– Every object has its own namespace

– Contains object attributes and object methods

– Is typically populated by the constructor

– Access by use of dot-operator
» from inside the class: through object reference sel f

» from outside the class: through object name

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 11

Object-Oriented Programming

• Example: cl ass Ti me
– Interactive use of module t i me1. py (part 1/2)

% l s
t i me1. py
% pyt hon
>>> f r om t i me1 i mpor t Ti me
>>> t ype(Ti me)
<t ype ' c l ass' >
>>> di r (Ti me)
[' Pr i nt ' , ' Pr i nt AMPM' , ' __doc__' , ' __i ni t __' , ' __modul e__']
>>> pr i nt Ti me. __doc__
abst r act dat a t ype f or r epr esent at i on of t i me
>>> pr i nt Ti me. __modul e__
t i me1
>>> t 1 = Ti me()
>>> t ype(t 1)
<t ype ' i nst ance' >
>>> pr i nt t 1
<t i me1. Ti me i nst ance at 0x8178e2c>
>>> di r (t 1)
[' Pr i nt ' , ' Pr i nt AMPM' , ' __doc__' , ' __i ni t __' , ' __modul e__' ,
' hour ' , ' mi nut e' , ' second']
. . .

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 12

Object-Oriented Programming

• Example: cl ass Ti me
– Interactive use of module t i me1. py (part 2/2)

. . .
>>> t 1. hour
0
>>> t 1. mi nut e
0
>>> t 1. second
0
>>> t 1. Pr i nt ()
00: 00: 00
>>> t 1. Pr i nt AMPM()
12: 00: 00 am
>>> t 1. hour = 15
>>> t 1. mi nut e = 30
>>> t 1. Pr i nt AMPM()

3: 30: 00 pm

ECE12: Introduction to Programming, Lecture 14 (c) 2004 R. Doemer 13

Object-Oriented Programming

• Example: cl ass Ti me
– Interactive use of module t i me1. py

– Notes:
• File t i me1. py can be used as a module for i mpor t

– Programs can be split into multiple files
– Class Ti me defined in module t i me1. py is imported

• Class contents can be listed with di r ()

• Documentation strings are compiled into __doc__

• Class instantiation
» t 1 = Ti me()

– A new object is created by calling the class as a function

– Implicitly the class constructor will be called

• Object contents can be listed with di r ()

• Object members can be accessed with the dot operator
» t 1. hour

