
EECS 211
Advanced System Software

Winter 2005

Assignment 2

Posted: January 22, 2005
Due: January 31, 2005

Topic: Concurrency and Synchronization in Nachos

Instructions:

The goal of this second assignment is to develop, implement and test
concurrency and synchronization primitives in the Nachos system. This
assignment mostly follows the “Nachos Assignment 1” described in the file
doc/ t hr ead. ps of the Nachos installation (see our previous assignment). The
instructions below assume that you read doc/ t hr eads. ps in parallel.

Task 1: Understand the given framework
Go into the t hr eads directory. Run the given program nachos to test the given
code. Trace the execution path by reading through the given sources. Use also
the debugger gdb to run the program step by step. Make sure you understand
what is going on in the SWI TCH function. Run the program also with the debug
option (- d), and make yourself familiar with the other options (see the comments
in file mai n. cc).

Task 2: Implement the missing locks and condition variables
See item 1 in doc/ t hr eads. ps . Complete the code for the classes Lock and
Condi t i on in file synch. cc . It may be helpful to look at the code in file
synchl i st . cc and synchl i st . h to understand the use of locks (member
l ock) and condition variables (member l i st Empt y).

Task 3: Implement a producer-consumer example with a bounded buffer
See item 2 in doc/ t hr eads. ps . To implement this, replace/modify the code in
file t hr eadt est . cc such that it creates producer and consumer threads that
communicate via a bounded buffer. The bounded buffer should be implemented
as a class Buf f er which allows the maximum number of characters in the buffer
to be set at the time of instantiation (constructor parameter). Make sure to put
sufficient comments and DEBUG statements in the code to make debugging
(and grading!) easier.
Test your bounded buffer example with the following 3 cases:

1. 1 producer, 1 consumer, buffer size 10, test message
“One pr oducer and one consumer communi cat i ng! ”

2. 1 producer, 2 consumers, buffer size 10, test message
“One pr oducer and t wo consumer s communi cat i ng! ”

3. 2 producers, 2 consumers, buffer size 10, test message
“Two pr oducer s and t wo consumer s communi cat i ng! ”

For switching between these different test cases, use preprocessor directives.
Test case 1 should be used if TEST1 is defined, case 2 should be used if TEST2
is defined, etc.
Test your code thoroughly! Make use of the –r s <seed> option to test context
switches at different times. Your program should run flawlessly in any case.

Task 4: Implement a non-preemptive priority-based scheduler
See item 8 in doc/ t hr eads. ps . To implement the new scheduler,
replace/modify the code in the files schedul er . cc and schedul er . h. The
priority should be a non-negative integer value where 0 indicates the highest
priority.

Test your scheduling algorithm with the consumer-producer example. Change
the priorities of the consumer and producer threads and observe the difference in
behavior with respect to the filling status of the buffer.

Deliverables:

1. Synchronization implementation: file synch. cc
2. Producer-consumer implementation: file t hr eadt est . cc
3. Priority-based scheduler: files schedul er . h, schedul er . cc
4. ASCII-text file explaining your experiments and results:

assi gnment 2. t xt

Detailed instructions on how to submit these files are listed on the next page!

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

Submission instructions:

We will use an electronic submission process to submit your deliverables.

To submit your files, go into your code directory, which is one level above the
t hr eads directory. There, type the command t ur ni n which interactively allows
you to submit the requested files. The t ur ni n command will list source and text
files in your homework directory and lets you turn in the deliverables one by one.
An example session looks as follows:

doemer @east > set env PATH / user s/ f acul t y/ doemer / eecs211/ bi n: $PATH
doemer @east > cd eecs211/ nachos- 3. 4/ code
doemer @east > l s
Makef i l e bi n/ net wor k/ user pr og/
Makef i l e. common f i l esys/ t est / vm/
Makef i l e. dep machi ne/ t hr eads/
doemer @east > t ur ni n
===
EECS 211 Wi nt er 2005: "
Assi gnment " t hr eads" submi ssi on f or doemer
Due dat e: Mon Jan 31 23: 59: 59 2005
===
Submi t synch. h [yes, no] ? n
Submi t synch. cc [yes, no] ? y
 Fi l e synch. cc has been submi t t ed
Submi t schedul er . cc [yes, no] ? y
 Fi l e schedul er . cc has been submi t t ed
[. . .]
===
 Summar y:
===
You j ust submi t t ed f i l e(s) :
 synch. cc
 schedul er . cc
You have not submi t t ed f i l e(s) :
 synch. h

Note that this submission process will only work before the deadline for the
assignment! To avoid missing the deadline, submit early. You may also submit
incomplete work early, as you can always re-submit (overwrite!) later, until the
deadline has passed.

Finally, you can use the following command to double-check which files have
already been submitted by you:

doemer @east > ~eecs10/ bi n/ l i s t f i l es. py
===
EECS 211 Wi nt er 2005: " t hr eads" l i s t i ng f or doemer
===
Fi l es submi t t ed f or assi gnment " t hr eads" :
synch. cc
schedul er . cc

