
1

Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Chapter 17 Distributed Coordination

� Event Ordering

� Mutual Exclusion

� Atomicity
� Concurrency Control

� Deadlock Handling

� Election Algorithms

� Reaching Agreement

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Event Ordering

� Happened-before relation (denoted by →).
� If A and B are events in the same process, and A was

executed before B, then A → B.
� If A is the event of sending a message by one process and

B is the event of receiving that message by another
process, then A → B.

� If A → B and B → C then A → C.

2

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Relative Time for Three Concurrent Processes

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Implementation of →→→→

� Associate a timestamp with each system event. Require
that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B.

� Within each process Pi a logical clock, LCi is associated.
The logical clock can be implemented as a simple
counter that is incremented between any two successive
events executed within a process.

� A process advances its logical clock when it receives a
message whose timestamp is greater than the current
value of its logical clock.

� If the timestamps of two events A and B are the same,
then the events are concurrent. We may use the process
identity numbers to break ties and to create a total
ordering.

3

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Distributed Mutual Exclusion (DME)

� Assumptions
� The system consists of n processes; each process Pi

resides at a different processor.
� Each process has a critical section that requires mutual

exclusion.

� Requirement
� If Pi is executing in its critical section, then no other process

Pj is executing in its critical section.

� We present two algorithms to ensure the mutual
exclusion execution of processes in their critical sections.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

DME: Centralized Approach
� One of the processes in the system is chosen to

coordinate the entry to the critical section.

� A process that wants to enter its critical section sends a
request message to the coordinator.

� The coordinator decides which process can enter the
critical section next, and its sends that process a reply
message.

� When the process receives a reply message from the
coordinator, it enters its critical section.

� After exiting its critical section, the process sends a
release message to the coordinator and proceeds with its
execution.

� This scheme requires three messages per critical-section
entry:
� request

� reply
� release

4

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

DME: Fully Distributed Approach

� When process Pi wants to enter its critical section, it
generates a new timestamp, TS, and sends the message
request (Pi, TS) to all other processes in the system.

� When process Pj receives a request message, it may
reply immediately or it may defer sending a reply back.

� When process Pi receives a reply message from all other
processes in the system, it can enter its critical section.

� After exiting its critical section, the process sends reply
messages to all its deferred requests.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

DME: Fully Distributed Approach (Cont.)

� The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on
three factors:
� If Pj is in its critical section, then it defers its reply to Pi.

� If Pj does not want to enter its critical section, then it sends a
reply immediately to Pi.

� If Pj wants to enter its critical section but has not yet entered
it, then it compares its own request timestamp with the
timestamp TS.

� If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first).

� Otherwise, the reply is deferred.

5

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Desirable Behavior of Fully Distributed Approach

� Freedom from Deadlock is ensured.

� Freedom from starvation is ensured, since entry to the
critical section is scheduled according to the timestamp
ordering. The timestamp ordering ensures that
processes are served in a first-come, first served order.

� The number of messages per critical-section entry is

2 x (n – 1).

This is the minimum number of required messages per
critical-section entry when processes act independently
and concurrently.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Three Undesirable Consequences

� The processes need to know the identity of all other
processes in the system, which makes the dynamic
addition and removal of processes more complex.

� If one of the processes fails, then the entire scheme
collapses. This can be dealt with by continuously
monitoring the state of all the processes in the system.

� Processes that have not entered their critical section must
pause frequently to assure other processes that they
intend to enter the critical section. This protocol is
therefore suited for small, stable sets of cooperating
processes.

