
1

Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Atomicity

� Either all the operations associated with a program unit
are executed to completion, or none are performed.

� Ensuring atomicity in a distributed system requires a
transaction coordinator, which is responsible for the
following:
� Starting the execution of the transaction.

� Breaking the transaction into a number of subtransactions,
and distribution these subtransactions to the appropriate
sites for execution.

� Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or
aborted at all sites.

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Two-Phase Commit Protocol (2PC)

� Assumes fail-stop model.

� Execution of the protocol is initiated by the coordinator
after the last step of the transaction has been reached.

� When the protocol is initiated, the transaction may still be
executing at some of the local sites.

� The protocol involves all the local sites at which the
transaction executed.

� Example: Let T be a transaction initiated at site Si and let
the transaction coordinator at Si be Ci.

2

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Phase 1: Obtaining a Decision

� Ci adds <prepare T> record to the log.

� Ci sends <prepare T> message to all sites.

� When a site receives a <prepare T> message, the
transaction manager determines if it can commit the
transaction.
� If no: add <no T> record to the log and respond to Ci with

<abort T>.
� If yes:

� add <ready T> record to the log.
� force all log records for T onto stable storage.
� transaction manager sends <ready T> message to Ci.

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Phase 1 (Cont.)

� Coordinator collects responses
� All respond “ready”,

decision is commit.
� At least one response is “abort”,

decision is abort.
� At least one participant fails to respond within time out

period,
decision is abort.

3

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Phase 2: Recording Decision in the Database

� Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage.
� Once that record reaches stable storage it is irrevocable

(even if failures occur).

� Coordinator sends a message to each participant
informing it of the decision (commit or abort).

� Participants take appropriate action locally.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

Failure Handling in 2PC – Site Failure

� The log contains a <commit T> record. In this case, the
site executes redo(T).

� The log contains an <abort T> record. In this case, the
site executes undo(T).

� The contains a <ready T> record; consult Ci. If Ci is
down, site sends query-status T message to the other
sites.

� The log contains no control records concerning T. In this
case, the site executes undo(T).

4

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

Failure Handling in 2PC – Coordinator Ci Failure

� If an active site contains a <commit T> record in its log,
the T must be committed.

� If an active site contains an <abort T> record in its log,
then T must be aborted.

� If some active site does not contain the record <ready T>
in its log then the failed coordinator Ci cannot have
decided to
commit T. Rather than wait for Ci to recover, it is
preferable to abort T.

� All active sites have a <ready T> record in their logs, but
no additional control records. In this case we must wait
for the coordinator to recover.
� Blocking problem – T is blocked pending the recovery of

site Si.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

Deadlock Prevention

� Resource-ordering deadlock-prevention – define a global
ordering among the system resources.
� Assign a unique number to all system resources.

� A process may request a resource with unique number i
only if it is not holding a resource with a unique number
grater than i.

� Simple to implement; requires little overhead.

� Banker’s algorithm – designate one of the processes in
the system as the process that maintains the information
necessary to carry out the Banker’s algorithm.
� Also implemented easily, but may require too much

overhead.

5

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Timestamped Deadlock-Prevention Scheme

� Each process Pi is assigned a unique priority number

� Priority numbers are used to decide whether a process Pi

should wait for a process Pj; otherwise Pi is rolled back.

� The scheme prevents deadlocks. For every edge Pi → Pj
in the wait-for graph, Pi has a higher priority than Pj. Thus
a cycle cannot exist.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Wait-Die Scheme

� Based on a nonpreemptive technique.

� If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp than
does Pj (Pi is older than Pj). Otherwise, Pi is rolled back
(dies).

� Example: Suppose that processes P1, P2, and P3 have
timestamps t, 10, and 15 respectively.
� if P1 request a resource held by P2, then P1 will wait.
� If P3 requests a resource held by P2, then P3 will be rolled

back.

6

Silberschatz, Galvin and Gagne 200217.11Operating System Concepts

Would-Wait Scheme

� Based on a preemptive technique; counterpart to the
wait-die system.

� If Pi requests a resource currently held by Pj, Pi is allowed
to wait only if it has a larger timestamp than does Pj (Pi is
younger than Pj). Otherwise Pj is rolled back (Pj is
wounded by Pi).

� Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.
� If P1 requests a resource held by P2, then the resource will

be preempted from P2 and P2 will be rolled back.
� If P3 requests a resource held by P2, then P3 will wait.

Silberschatz, Galvin and Gagne 200217.12Operating System Concepts

Deadlock Detection – Centralized Approach

� Each site keeps a local wait-for graph. The nodes of the
graph correspond to all the processes that are currently
either holding or requesting any of the resources local to
that site.

� A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local
wait-for graphs.

� There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the

local wait-for graphs.
2. Periodically, when a number of changes have occurred in a

wait-for graph.
3. Whenever the coordinator needs to invoke the cycle-

detection algorithm..

� Unnecessary rollbacks may occur as a result of false
cycles.

7

Silberschatz, Galvin and Gagne 200217.13Operating System Concepts

Two Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.14Operating System Concepts

Global Wait-For Graph

8

Silberschatz, Galvin and Gagne 200217.15Operating System Concepts

Detection Algorithm Based on Option 3

� Append unique identifiers (timestamps) to requests form
different sites.

� When process Pi, at site A, requests a resource from
process Pj, at site B, a request message with timestamp
TS is sent.

� The edge Pi → Pj with the label TS is inserted in the local
wait-for of A. The edge is inserted in the local wait-for
graph of B only if B has received the request message
and cannot immediately grant the requested resource.

Silberschatz, Galvin and Gagne 200217.16Operating System Concepts

The Algorithm

1. The controller sends an initiating message to each site in
the system.

2. On receiving this message, a site sends its local wait-for
graph to the coordinator.

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process

in the system.

(b) The graph has an edge Pi → Pj if and only if (1) there is an
edge Pi → Pj in one of the wait-for graphs, or (2) an edge
Pi → Pj with some label TS appears in more than one
wait-for graph.

If the constructed graph contains a cycle � deadlock.

9

Silberschatz, Galvin and Gagne 200217.17Operating System Concepts

Local and Global Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.18Operating System Concepts

Fully Distributed Approach

� All controllers share equally the responsibility for
detecting deadlock.

� Every site constructs a wait-for graph that represents a
part of the total graph.

� We add one additional node Pex to each local wait-for
graph.

� If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state.

� A cycle involving Pex implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked.

10

Silberschatz, Galvin and Gagne 200217.19Operating System Concepts

Augmented Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.20Operating System Concepts

Augmented Local Wait-For Graph in Site S2

