
1

Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Atomicity

� Either all the operations associated with a program unit
are executed to completion, or none are performed.

� Ensuring atomicity in a distributed system requires a
transaction coordinator, which is responsible for the
following:
� Starting the execution of the transaction.

� Breaking the transaction into a number of subtransactions,
and distribution these subtransactions to the appropriate
sites for execution.

� Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or
aborted at all sites.

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Two-Phase Commit Protocol (2PC)

� Assumes fail-stop model.

� Execution of the protocol is initiated by the coordinator
after the last step of the transaction has been reached.

� When the protocol is initiated, the transaction may still be
executing at some of the local sites.

� The protocol involves all the local sites at which the
transaction executed.

� Example: Let T be a transaction initiated at site Si and let
the transaction coordinator at Si be Ci.

2

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Phase 1: Obtaining a Decision

� Ci adds <prepare T> record to the log.

� Ci sends <prepare T> message to all sites.

� When a site receives a <prepare T> message, the
transaction manager determines if it can commit the
transaction.
� If no: add <no T> record to the log and respond to Ci with

<abort T>.
� If yes:

� add <ready T> record to the log.
� force all log records for T onto stable storage.
� transaction manager sends <ready T> message to Ci.

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Phase 1 (Cont.)

� Coordinator collects responses
� All respond “ready”,

decision is commit.
� At least one response is “abort”,

decision is abort.
� At least one participant fails to respond within time out

period,
decision is abort.

3

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Phase 2: Recording Decision in the Database

� Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage.
� Once that record reaches stable storage it is irrevocable

(even if failures occur).

� Coordinator sends a message to each participant
informing it of the decision (commit or abort).

� Participants take appropriate action locally.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

Failure Handling in 2PC – Site Failure

� The log contains a <commit T> record. In this case, the
site executes redo(T).

� The log contains an <abort T> record. In this case, the
site executes undo(T).

� The contains a <ready T> record; consult Ci. If Ci is
down, site sends query-status T message to the other
sites.

� The log contains no control records concerning T. In this
case, the site executes undo(T).

4

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

Failure Handling in 2PC – Coordinator Ci Failure

� If an active site contains a <commit T> record in its log,
the T must be committed.

� If an active site contains an <abort T> record in its log,
then T must be aborted.

� If some active site does not contain the record <ready T>
in its log then the failed coordinator Ci cannot have
decided to
commit T. Rather than wait for Ci to recover, it is
preferable to abort T.

� All active sites have a <ready T> record in their logs, but
no additional control records. In this case we must wait
for the coordinator to recover.
� Blocking problem – T is blocked pending the recovery of

site Si.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

Deadlock Prevention

� Resource-ordering deadlock-prevention – define a global
ordering among the system resources.
� Assign a unique number to all system resources.

� A process may request a resource with unique number i
only if it is not holding a resource with a unique number
grater than i.

� Simple to implement; requires little overhead.

� Banker’s algorithm – designate one of the processes in
the system as the process that maintains the information
necessary to carry out the Banker’s algorithm.
� Also implemented easily, but may require too much

overhead.

5

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Timestamped Deadlock-Prevention Scheme

� Each process Pi is assigned a unique priority number

� Priority numbers are used to decide whether a process Pi

should wait for a process Pj; otherwise Pi is rolled back.

� The scheme prevents deadlocks. For every edge Pi → Pj
in the wait-for graph, Pi has a higher priority than Pj. Thus
a cycle cannot exist.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Wait-Die Scheme

� Based on a nonpreemptive technique.

� If Pi requests a resource currently held by Pj, Pi is
allowed to wait only if it has a smaller timestamp than
does Pj (Pi is older than Pj). Otherwise, Pi is rolled back
(dies).

� Example: Suppose that processes P1, P2, and P3 have
timestamps t, 10, and 15 respectively.
� if P1 request a resource held by P2, then P1 will wait.
� If P3 requests a resource held by P2, then P3 will be rolled

back.

6

Silberschatz, Galvin and Gagne 200217.11Operating System Concepts

Would-Wait Scheme

� Based on a preemptive technique; counterpart to the
wait-die system.

� If Pi requests a resource currently held by Pj, Pi is allowed
to wait only if it has a larger timestamp than does Pj (Pi is
younger than Pj). Otherwise Pj is rolled back (Pj is
wounded by Pi).

� Example: Suppose that processes P1, P2, and P3 have
timestamps 5, 10, and 15 respectively.
� If P1 requests a resource held by P2, then the resource will

be preempted from P2 and P2 will be rolled back.
� If P3 requests a resource held by P2, then P3 will wait.

Silberschatz, Galvin and Gagne 200217.12Operating System Concepts

Deadlock Detection – Centralized Approach

� Each site keeps a local wait-for graph. The nodes of the
graph correspond to all the processes that are currently
either holding or requesting any of the resources local to
that site.

� A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local
wait-for graphs.

� There are three different options (points in time) when the
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the

local wait-for graphs.
2. Periodically, when a number of changes have occurred in a

wait-for graph.
3. Whenever the coordinator needs to invoke the cycle-

detection algorithm..

� Unnecessary rollbacks may occur as a result of false
cycles.

7

Silberschatz, Galvin and Gagne 200217.13Operating System Concepts

Two Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.14Operating System Concepts

Global Wait-For Graph

8

Silberschatz, Galvin and Gagne 200217.15Operating System Concepts

Detection Algorithm Based on Option 3

� Append unique identifiers (timestamps) to requests form
different sites.

� When process Pi, at site A, requests a resource from
process Pj, at site B, a request message with timestamp
TS is sent.

� The edge Pi → Pj with the label TS is inserted in the local
wait-for of A. The edge is inserted in the local wait-for
graph of B only if B has received the request message
and cannot immediately grant the requested resource.

Silberschatz, Galvin and Gagne 200217.16Operating System Concepts

The Algorithm

1. The controller sends an initiating message to each site in
the system.

2. On receiving this message, a site sends its local wait-for
graph to the coordinator.

3. When the controller has received a reply from each site, it
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process

in the system.

(b) The graph has an edge Pi → Pj if and only if (1) there is an
edge Pi → Pj in one of the wait-for graphs, or (2) an edge
Pi → Pj with some label TS appears in more than one
wait-for graph.

If the constructed graph contains a cycle � deadlock.

9

Silberschatz, Galvin and Gagne 200217.17Operating System Concepts

Local and Global Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.18Operating System Concepts

Fully Distributed Approach

� All controllers share equally the responsibility for
detecting deadlock.

� Every site constructs a wait-for graph that represents a
part of the total graph.

� We add one additional node Pex to each local wait-for
graph.

� If a local wait-for graph contains a cycle that does not
involve node Pex, then the system is in a deadlock state.

� A cycle involving Pex implies the possibility of a deadlock.
To ascertain whether a deadlock does exist, a distributed
deadlock-detection algorithm must be invoked.

10

Silberschatz, Galvin and Gagne 200217.19Operating System Concepts

Augmented Local Wait-For Graphs

Silberschatz, Galvin and Gagne 200217.20Operating System Concepts

Augmented Local Wait-For Graph in Site S2

