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Atomicity 

� Either all the operations associated with a program unit 
are executed to completion, or none are performed. 

� Ensuring atomicity in a distributed system requires a 
transaction coordinator, which is responsible for the 
following:
� Starting the execution of the transaction.

� Breaking the transaction into a number of subtransactions, 
and distribution these subtransactions to the appropriate 
sites for execution. 

� Coordinating the termination of the transaction, which may 
result in the transaction being committed at all sites or 
aborted at all sites. 
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Two-Phase Commit Protocol (2PC)

� Assumes fail-stop model.

� Execution of the protocol is initiated by the coordinator 
after the last step of the transaction has been reached.

� When the protocol is initiated, the transaction may still be 
executing at some of the local sites.

� The protocol involves all the local sites at which the 
transaction executed.

� Example:  Let T be a transaction initiated at site Si and let 
the transaction coordinator at Si be Ci.
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Phase 1:  Obtaining a Decision

� Ci adds <prepare T> record to the log. 

� Ci sends <prepare T> message to all sites.

� When a site receives a <prepare T> message, the 
transaction manager determines if it can commit the 
transaction.
� If no:  add <no T> record to the log and respond to Ci with 

<abort T>.
� If yes:

� add <ready T> record to the log.
� force all log records for T onto stable storage. 
� transaction manager sends <ready T> message to Ci.
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Phase 1 (Cont.)

� Coordinator collects responses
� All respond “ready”, 

decision is commit.
� At least one response is “abort”,

decision is abort. 
� At least one participant fails to respond within time out 

period,
decision is abort. 
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Phase 2:  Recording Decision in the Database

� Coordinator adds a decision record 

<abort T> or <commit T>

to its log and forces record onto stable storage.
� Once that record reaches stable storage it is irrevocable 

(even if failures occur).

� Coordinator sends a message to each participant 
informing it of the decision (commit or abort).

� Participants take appropriate action locally.
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Failure Handling in 2PC – Site Failure

� The log contains a <commit T> record.  In this case, the 
site executes redo(T).

� The log contains an <abort T> record.  In this case, the 
site executes undo(T).

� The contains a <ready T> record; consult Ci.  If Ci is 
down, site sends query-status T message to the other 
sites.

� The log contains no control records concerning T.  In this 
case, the site executes undo(T).
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Failure Handling in 2PC – Coordinator Ci Failure

� If an active site contains a <commit T> record in its log, 
the T must be committed.

� If an active site contains an <abort T> record in its log, 
then T must be aborted.

� If some active site does not contain the record <ready T> 
in its log then the failed coordinator Ci cannot have 
decided to 
commit T.  Rather than wait for Ci to recover, it is 
preferable to abort T. 

� All active sites have a <ready T> record in their logs, but 
no additional control records.  In this case we must wait 
for the coordinator to recover. 
� Blocking problem  – T is blocked pending the recovery of 

site Si.

Silberschatz, Galvin and  Gagne 200217.8Operating System Concepts

Deadlock Prevention

� Resource-ordering deadlock-prevention – define a global
ordering among the system resources. 
� Assign a unique number to all system resources.

� A process may request a resource with unique number i
only if it is not holding a resource with a unique number 
grater than i.

� Simple to implement; requires little overhead.

� Banker’s algorithm – designate one of the processes in 
the system as the process that maintains the information 
necessary to carry out the Banker’s algorithm.
� Also implemented easily, but may require too much 

overhead.
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Timestamped Deadlock-Prevention Scheme

� Each process Pi is assigned a unique priority number 

� Priority numbers are used to decide whether a process Pi

should wait for a process Pj; otherwise Pi is rolled back.

� The scheme prevents deadlocks.  For every edge Pi → Pj
in the wait-for graph, Pi has a higher priority than Pj.  Thus 
a cycle cannot exist.
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Wait-Die Scheme

� Based on a nonpreemptive technique.

� If Pi requests a resource currently held by Pj, Pi is 
allowed to wait only if it has a smaller timestamp than 
does Pj (Pi is older than Pj).  Otherwise, Pi is rolled back 
(dies).

� Example:  Suppose that processes P1, P2, and P3 have 
timestamps t, 10, and 15 respectively.
� if P1 request a resource held by P2, then P1 will wait.
� If P3 requests a resource held by P2, then P3 will be rolled 

back.
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Would-Wait Scheme

� Based on a preemptive technique; counterpart to the 
wait-die system.

� If Pi requests a resource currently held by Pj, Pi is allowed 
to wait only if it has a larger timestamp than does Pj (Pi is 
younger than Pj).  Otherwise Pj is rolled back (Pj is 
wounded by Pi).

� Example:  Suppose that processes P1, P2, and P3 have 
timestamps 5, 10, and 15 respectively.
� If P1 requests a resource held by P2, then the resource will 

be preempted from P2 and P2 will be rolled back.
� If P3 requests a resource held by P2, then P3 will wait.
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Deadlock Detection – Centralized Approach

� Each site keeps a local wait-for graph.  The nodes of the 
graph correspond to all the processes that are currently 
either holding or requesting any of the resources local to 
that site.

� A global wait-for graph is maintained in a single
coordination process; this graph is the union of all local 
wait-for graphs. 

� There are three different options (points in time) when the 
wait-for graph may be constructed:
1. Whenever a new edge is inserted or removed in one of the 

local wait-for graphs.
2. Periodically, when a number of changes have occurred in a 

wait-for graph.
3. Whenever the coordinator needs to invoke the cycle-

detection algorithm..

� Unnecessary rollbacks may occur as a result of false 
cycles.
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Two Local Wait-For Graphs

Silberschatz, Galvin and  Gagne 200217.14Operating System Concepts

Global Wait-For Graph
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Detection Algorithm Based on Option 3

� Append unique identifiers (timestamps) to requests form 
different sites.

� When process Pi, at site A, requests a resource from 
process Pj, at site B, a request message with timestamp 
TS is sent.

� The edge Pi → Pj with the label TS is inserted in the local 
wait-for of A. The edge is inserted in the local wait-for 
graph of B only if B has received the request message 
and cannot immediately grant the requested resource.

Silberschatz, Galvin and  Gagne 200217.16Operating System Concepts

The Algorithm 

1. The controller sends an initiating message to each site in 
the system. 

2. On receiving this message, a site sends its local wait-for 
graph to the coordinator. 

3. When the controller has received a reply from each site, it 
constructs a graph as follows:
(a) The constructed graph contains a vertex for every process 

in the system.

(b) The graph has an edge Pi → Pj if and only if (1) there is an 
edge Pi → Pj in one of the wait-for graphs, or (2) an edge 
Pi → Pj with some label TS appears in more than one 
wait-for graph. 

If the constructed graph contains a cycle � deadlock.
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Local and Global Wait-For Graphs

Silberschatz, Galvin and  Gagne 200217.18Operating System Concepts

Fully Distributed Approach

� All controllers share equally the responsibility for 
detecting deadlock.

� Every site constructs a wait-for graph that represents a 
part of the total graph.

� We add one additional node Pex to each local wait-for 
graph.

� If a local wait-for graph contains a cycle that does not 
involve node Pex, then the system is in a deadlock state.

� A cycle involving Pex implies the possibility of a deadlock.  
To ascertain whether a deadlock does exist, a distributed 
deadlock-detection algorithm must be invoked.
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Augmented Local Wait-For Graphs 
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Augmented Local Wait-For Graph in Site S2


