
1

Silberschatz, Galvin and Gagne 200217.1Operating System Concepts

Election Algorithms

� Determine where a new copy of the coordinator should be
restarted.

� Assume that a unique priority number is associated with
each active process in the system, and assume that the
priority number of process Pi is i.

� Assume a one-to-one correspondence between
processes and sites.

� The coordinator is always the process with the largest
priority number. When a coordinator fails, the algorithm
must elect that active process with the largest priority
number.

� Two algorithms, the bully algorithm and a ring algorithm,
can be used to elect a new coordinator in case of failures.

Silberschatz, Galvin and Gagne 200217.2Operating System Concepts

Bully Algorithm

� Applicable to systems where every process can send a
message to every other process in the system.

� If process Pi sends a request that is not answered by the
coordinator within a time interval T, assume that the
coordinator has failed; Pi tries to elect itself as the new
coordinator.

� Pi sends an election message to every process with a
higher priority number, Pi then waits for any of these
processes to answer within T.

2

Silberschatz, Galvin and Gagne 200217.3Operating System Concepts

Bully Algorithm (Cont.)

� If no response within T, assume that all processes with
numbers greater than i have failed; Pi elects itself the new
coordinator. Pi then sends a message to all processes
with lower priority numbers to inform them about Pi being
the new coordinator.

� If answer is received, Pi begins time interval T´, waiting to
receive a message that a process with a higher priority
number has been elected.

� If no message is sent within T´, assume the process with
a higher number has failed; Pi should restart the algorithm

Silberschatz, Galvin and Gagne 200217.4Operating System Concepts

Bully Algorithm (Cont.)

� If Pi is not the coordinator, then, at any time during execution, Pi
may receive one of the following two messages from process Pj.
� Pj is the new coordinator (j > i). Pi, in turn, records this information.
� Pj started an election (j < i). Pi sends a response to Pj and begins

its own election algorithm, provided that Pi has not already initiated
such an election.

� After a failed process recovers, it immediately begins execution
of the same algorithm.

� If there are no active processes with higher numbers, the
recovered process forces all processes with lower number to let
it become the coordinator process, even if there is a currently
active coordinator with a lower number.

3

Silberschatz, Galvin and Gagne 200217.5Operating System Concepts

Ring Algorithm

� Applicable to systems organized as a ring (logically or
physically).

� Assumes that the links are unidirectional, and that processes
send their messages to their right neighbors.

� Each process maintains an active list, consisting of all the
priority numbers of all active processes in the system when
the algorithm ends.

� If process Pi detects a coordinator failure, it creates a new
active list that is initially empty. It then sends a message
elect(i) to its right neighbor, and adds the number i to its active
list.

Silberschatz, Galvin and Gagne 200217.6Operating System Concepts

Ring Algorithm (Cont.)

� If Pi receives a message elect(j) from the process on the
left, it must respond in one of three ways:

1. If this is the first elect message it has seen or sent, Pi
creates a new active list with the numbers i and j. It then
sends the message elect(i), followed by the message
elect(j).

2. If i ≠ j, then Pi adds j to its active list and forwards the
message to its right neighbor.

3. If i = j, then Pi receives the message elect(i). The active list
for Pi contains all the active processes in the system. Pi can
now determine the new coordinator process.

4

Silberschatz, Galvin and Gagne 200217.7Operating System Concepts

Reaching Agreement

� There are applications where a set of processes wish to
agree on a common “value”.

� Such agreement may not take place due to:
� Faulty communication medium

� Faulty processes
� Processes may send garbled or incorrect messages to

other processes.
� A subset of the processes may collaborate with each

other in an attempt to defeat the scheme.

Silberschatz, Galvin and Gagne 200217.8Operating System Concepts

Faulty Communications

� Process Pi at site A, has sent a message to process Pj at
site B; to proceed, Pi needs to know if Pj has received the
message.

� Detect failures using a time-out scheme.
� When Pi sends out a message, it also specifies a time

interval during which it is willing to wait for an
acknowledgment message from Pj.

� When Pj receives the message, it immediately sends an
acknowledgment to Pi.

� If Pi receives the acknowledgment message within the
specified time interval, it concludes that Pj has received its
message. If a time-out occurs, Pj needs to retransmit its
message and wait for an acknowledgment.

� Continue until Pi either receives an acknowledgment, or is
notified by the system that B is down.

5

Silberschatz, Galvin and Gagne 200217.9Operating System Concepts

Faulty Communications (Cont.)

� Suppose that Pj also needs to know that Pi has received
its acknowledgment message, in order to decide on how
to proceed.

� In the presence of failure, it is not possible to accomplish
this task.

� It is not possible in a distributed environment for processes
Pi and Pj to agree completely on their respective states.

Silberschatz, Galvin and Gagne 200217.10Operating System Concepts

Faulty Processes (Byzantine Generals Problem)

� Communication medium is reliable, but processes can
fail in unpredictable ways.

� Consider a system of n processes, of which no more
than m are faulty. Suppose that each process Pi has
some private value of Vi.

� Devise an algorithm that allows each nonfaulty Pi to
construct a vector Xi = (Ai,1, Ai,2, …, Ai,n) such that::
� If Pj is a nonfaulty process, then Aij = Vj.

� If Pi and Pj are both nonfaulty processes, then Xi = Xj.

� Solutions share the following properties.
� A correct algorithm can be devised only if n ≥ 3 x m + 1.
� The worst-case delay for reaching agreement is

proportionate to m + 1 message-passing delays.

6

Silberschatz, Galvin and Gagne 200217.11Operating System Concepts

Faulty Processes (Cont.)

� An algorithm for the case where m = 1 and n = 4 requires
two rounds of information exchange:
� Each process sends its private value to the other 3

processes.
� Each process sends the information it has obtained in the

first round to all other processes.

� If a faulty process refuses to send messages, a nonfaulty
process can choose an arbitrary value and pretend that
that value was sent by that process.

� After the two rounds are completed, a nonfaulty process
Pi can construct its vector Xi = (Ai,1, Ai,2, Ai,3, Ai,4) as
follows:
� Ai,i = Vi.

� For j ≠ i, if at least two of the three values reported for
process Pj agree, then the majority value is used to set the
value of Aij. Otherwise, a default value (nil) is used.

