
1

Silberschatz, Galvin and Gagne 200220.1Operating System Concepts

Chapter 20: The Linux System

� History

� Design Principles

� Kernel Modules

� Process Management
� Scheduling

� Memory Management

� File Systems

� Input and Output

� Interprocess Communication
� Network Structure

� Security

Silberschatz, Galvin and Gagne 200220.2Operating System Concepts

History

� Linux is a modem, free operating system based on UNIX
standards.

� First developed as a small but self-contained kernel in
1991 by Linus Torvalds, with the major design goal of
UNIX compatibility.

� Its history has been one of collaboration by many users
from all around the world, corresponding almost
exclusively over the Internet.

� It has been designed to run efficiently and reliably on
common PC hardware, but also runs on a variety of other
platforms.

� The core Linux operating system kernel is entirely
original, but it can run much existing free UNIX software,
resulting in an entire UNIX-compatible operating system
free from proprietary code.

2

Silberschatz, Galvin and Gagne 200220.3Operating System Concepts

The Linux Kernel

� Version 0.01 (May 1991) had no networking, ran only on
80386-compatible Intel processors and on PC hardware,
had extremely limited device-drive support, and
supported only the Minix file system.

� Linux 1.0 (March 1994) included these new features:
� Support for UNIX’s standard TCP/IP networking protocols

� BSD-compatible socket interface for networking
programming

� Device-driver support for running IP over an Ethernet

� Enhanced file system
� Support for a range of SCSI controllers for

high-performance disk access
� Extra hardware support

� Version 1.2 (March 1995) was the final PC-only Linux
kernel.

Silberschatz, Galvin and Gagne 200220.4Operating System Concepts

Linux 2.0

� Released in June 1996, 2.0 added two major new
capabilities:
� Support for multiple architectures, including a fully 64-bit

native Alpha port.

� Support for multiprocessor architectures

� Other new features included:
� Improved memory-management code
� Improved TCP/IP performance
� Support for internal kernel threads, for handling

dependencies between loadable modules, and for automatic
loading of modules on demand.

� Standardized configuration interface

� Available for Motorola 68000-series processors, Sun
Sparc systems, and for PC and PowerMac systems.

3

Silberschatz, Galvin and Gagne 200220.5Operating System Concepts

The Linux System

� Linux uses many tools developed as part of Berkeley’s
BSD operating system, MIT’s X Window System, and the
Free Software Foundation's GNU project.

� The min system libraries were started by the GNU
project, with improvements provided by the Linux
community.

� Linux networking-administration tools were derived from
4.3BSD code; recent BSD derivatives such as Free BSD
have borrowed code from Linux in return.

� The Linux system is maintained by a loose network of
developers collaborating over the Internet, with a small
number of public ftp sites acting as de facto standard
repositories.

Silberschatz, Galvin and Gagne 200220.6Operating System Concepts

Linux Distributions

� Standard, precompiled sets of packages, or distributions,
include the basic Linux system, system installation and
management utilities, and ready-to-install packages of
common UNIX tools.

� The first distributions managed these packages by simply
providing a means of unpacking all the files into the
appropriate places; modern distributions include
advanced package management.

� Early distributions included SLS and Slackware. Red Hat
and Debian are popular distributions from commercial
and noncommercial sources, respectively.

� The RPM Package file format permits compatibility
among the various Linux distributions.

4

Silberschatz, Galvin and Gagne 200220.7Operating System Concepts

Linux Licensing

� The Linux kernel is distributed under the GNU General
Public License (GPL), the terms of which are set out by
the Free Software Foundation.

� Anyone using Linux, or creating their own derivative of
Linux, may not make the derived product proprietary;
software released under the GPL may not be
redistributed as a binary-only product.

Silberschatz, Galvin and Gagne 200220.8Operating System Concepts

Design Principles

� Linux is a multiuser, multitasking system with a full set of
UNIX-compatible tools..

� Its file system adheres to traditional UNIX semantics, and
it fully implements the standard UNIX networking model.

� Main design goals are speed, efficiency, and
standardization.

� Linux is designed to be compliant with the relevant
POSIX documents; at least two Linux distributions have
achieved official POSIX certification.

� The Linux programming interface adheres to the SVR4
UNIX semantics, rather than to BSD behavior.

5

Silberschatz, Galvin and Gagne 200220.9Operating System Concepts

Components of a Linux System

Silberschatz, Galvin and Gagne 200220.10Operating System Concepts

Components of a Linux System (Cont.)

� Like most UNIX implementations, Linux is composed of
three main bodies of code; the most important distinction
between the kernel and all other components.

� The kernel is responsible for maintaining the important
abstractions of the operating system.
� Kernel code executes in kernel mode with full access to all

the physical resources of the computer.
� All kernel code and data structures are kept in the same

single address space.

6

Silberschatz, Galvin and Gagne 200220.11Operating System Concepts

Components of a Linux System (Cont.)

� The system libraries define a standard set of functions
through which applications interact with the kernel, and
which implement much of the operating-system
functionality that does not need the full privileges of
kernel code.

� The system utilities perform individual specialized
management tasks.

Silberschatz, Galvin and Gagne 200220.12Operating System Concepts

Kernel Modules

� Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel.

� A kernel module may typically implement a device driver, a
file system, or a networking protocol.

� The module interface allows third parties to write and
distribute, on their own terms, device drivers or file
systems that could not be distributed under the GPL.

� Kernel modules allow a Linux system to be set up with a
standard, minimal kernel, without any extra device drivers
built in.

� Three components to Linux module support:
� module management
� driver registration
� conflict resolution

7

Silberschatz, Galvin and Gagne 200220.13Operating System Concepts

Process Management

� UNIX process management separates the creation of
processes and the running of a new program into two
distinct operations.
� The fork system call creates a new process.
� A new program is run after a call to execve.

� Under UNIX, a process encompasses all the information
that the operating system must maintain t track the
context of a single execution of a single program.

� Under Linux, process properties fall into three groups:
the process’s identity, environment, and context.

Silberschatz, Galvin and Gagne 200220.14Operating System Concepts

Process Identity

� Process ID (PID). The unique identifier for the process;
used to specify processes to the operating system when
an application makes a system call to signal, modify, or
wait for another process.

� Credentials. Each process must have an associated
user ID and one or more group IDs that determine the
process’s rights to access system resources and files.

� Personality. Not traditionally found on UNIX systems,
but under Linux each process has an associated
personality identifier that can slightly modify the
semantics of certain system calls.
Used primarily by emulation libraries to request that
system calls be compatible with certain specific flavors of
UNIX.

8

Silberschatz, Galvin and Gagne 200220.15Operating System Concepts

Process Environment

� The process’s environment is inherited from its parent,
and is composed of two null-terminated vectors:
� The argument vector lists the command-line arguments

used to invoke the running program; conventionally starts
with the name of the program itself

� The environment vector is a list of “NAME=VALUE” pairs
that associates named environment variables with arbitrary
textual values.

� Passing environment variables among processes and
inheriting variables by a process’s children are flexible
means of passing information to components of the user-
mode system software.

� The environment-variable mechanism provides a
customization of the operating system that can be set on
a per-process basis, rather than being configured for the
system as a whole.

Silberschatz, Galvin and Gagne 200220.16Operating System Concepts

Process Context

� The (constantly changing) state of a running program at
any point in time.

� The scheduling context is the most important part of the
process context; it is the information that the scheduler
needs to suspend and restart the process.

� The kernel maintains accounting information about the
resources currently being consumed by each process,
and the total resources consumed by the process in its
lifetime so far.

� The file table is an array of pointers to kernel file
structures. When making file I/O system calls, processes
refer to files by their index into this table.

9

Silberschatz, Galvin and Gagne 200220.17Operating System Concepts

Process Context (Cont.)

� Whereas the file table lists the existing open files, the
file-system context applies to requests to open new
files. The current root and default directories to be used
for new file searches are stored here.

� The signal-handler table defines the routine in the
process’s address space to be called when specific
signals arrive.

� The virtual-memory context of a process describes the
full contents of the its private address space.

Silberschatz, Galvin and Gagne 200220.18Operating System Concepts

Processes and Threads

� Linux uses the same internal representation for
processes and threads; a thread is simply a new process
that happens to share the same address space as its
parent.

� A distinction is only made when a new thread is created
by the clone system call.
� fork creates a new process with its own entirely new

process context

� clone creates a new process with its own identity, but that is
allowed to share the data structures of its parent

� Using clone gives an application fine-grained control over
exactly what is shared between two threads.

10

Silberschatz, Galvin and Gagne 200220.19Operating System Concepts

Scheduling

� The job of allocating CPU time to different tasks within an
operating system.

� While scheduling is normally thought of as the running
and interrupting of processes, in Linux, scheduling also
includes the running of the various kernel tasks.

� Running kernel tasks encompasses both tasks that are
requested by a running process and tasks that execute
internally on behalf of a device driver.

Silberschatz, Galvin and Gagne 200220.20Operating System Concepts

Kernel Synchronization

� A request for kernel-mode execution can occur in two
ways:
� A running program may request an operating system

service, either explicitly via a system call, or implicitly, for
example, when a page fault occurs.

� A device driver may deliver a hardware interrupt that causes
the CPU to start executing a kernel-defined handler for that
interrupt.

� Kernel synchronization requires a framework that will
allow the kernel’s critical sections to run without
interruption by another critical section.

11

Silberschatz, Galvin and Gagne 200220.21Operating System Concepts

Kernel Synchronization (Cont.)

� To avoid performance penalties, Linux’s kernel uses a
synchronization architecture that allows long critical
sections to run without having interrupts disabled for the
critical section’s entire duration.

� Interrupt service routines are separated into a top half
and a bottom half.
� The top half is a normal interrupt service routine, and runs

with recursive interrupts disabled.
� The bottom half is run, with all interrupts enabled, by a

miniature scheduler that ensures that bottom halves never
interrupt themselves.

� This architecture is completed by a mechanism for disabling
selected bottom halves while executing normal, foreground
kernel code.

Silberschatz, Galvin and Gagne 200220.22Operating System Concepts

Interrupt Protection Levels

� Each level may be interrupted by code running at a
higher level, but will never be interrupted by code
running at the same or a lower level.

� User processes can always be preempted by another
process when a time-sharing scheduling interrupt
occurs.

12

Silberschatz, Galvin and Gagne 200220.23Operating System Concepts

Process Scheduling

� Linux uses two process-scheduling algorithms:
� A time-sharing algorithm for fair preemptive scheduling

between multiple processes
� A real-time algorithm for tasks where absolute priorities

are more important than fairness

� A process’s scheduling class defines which algorithm to
apply.

� For time-sharing processes, Linux uses a prioritized,
credit based algorithm.
� The crediting rule

factors in both the process’s history and its priority.
� This crediting system automatically prioritizes interactive

or I/O-bound processes.

priority
2

credits
 : credits +=

Silberschatz, Galvin and Gagne 200220.24Operating System Concepts

Process Scheduling (Cont.)

� Linux implements the FIFO and round-robin real-time
scheduling classes; in both cases, each process has a
priority in addition to its scheduling class.
� The scheduler runs the process with the highest priority; for

equal-priority processes, it runs the longest-waiting one

� FIFO processes continue to run until they either exit or block
� A round-robin process will be preempted after a while and

moved to the end of the scheduling queue, so that round-
robing processes of equal priority automatically time-share
between themselves.

13

Silberschatz, Galvin and Gagne 200220.25Operating System Concepts

Symmetric Multiprocessing

� Linux 2.0 was the first Linux kernel to support SMP
hardware; separate processes or threads can execute in
parallel on separate processors.

� To preserve the kernel’s nonpreemptible synchronization
requirements, SMP imposes the restriction, via a single
kernel spinlock, that only one processor at a time may
execute kernel-mode code.

Silberschatz, Galvin and Gagne 200220.26Operating System Concepts

Memory Management

� Linux’s physical memory-management system deals with
allocating and freeing pages, groups of pages, and small
blocks of memory.

� It has additional mechanisms for handling virtual memory,
memory mapped into the address space of running
processes.

14

Silberschatz, Galvin and Gagne 200220.27Operating System Concepts

Splitting of Memory in a Buddy Heap

Silberschatz, Galvin and Gagne 200220.28Operating System Concepts

Managing Physical Memory

� The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request.

� The allocator uses a buddy-heap algorithm to keep track of
available physical pages.
� Each allocatable memory region is paired with an adjacent

partner.
� Whenever two allocated partner regions are both freed up they

are combined to form a larger region.

� If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request.

� Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator).

15

Silberschatz, Galvin and Gagne 200220.29Operating System Concepts

Virtual Memory

� The VM system maintains the address space visible to
each process: It creates pages of virtual memory on
demand, and manages the loading of those pages from
disk or their swapping back out to disk as required.

� The VM manager maintains two separate views of a
process’s address space:
� A logical view describing instructions concerning the layout

of the address space.
The address space consists of a set of nonoverlapping
regions, each representing a continuous, page-aligned
subset of the address space.

� A physical view of each address space which is stored in
the hardware page tables for the process.

Silberschatz, Galvin and Gagne 200220.30Operating System Concepts

Virtual Memory (Cont.)

� Virtual memory regions are characterized by:
� The backing store, which describes from where the pages

for a region come; regions are usually backed by a file or by
nothing (demand-zero memory)

� The region’s reaction to writes (page sharing or copy-on-
write).

� The kernel creates a new virtual address space
1. When a process runs a new program with the exec system

call

2. Upon creation of a new process by the fork system call

16

Silberschatz, Galvin and Gagne 200220.31Operating System Concepts

Virtual Memory (Cont.)

� On executing a new program, the process is given a new,
completely empty virtual-address space; the program-
loading routines populate the address space with virtual-
memory regions.

� Creating a new process with fork involves creating a
complete copy of the existing process’s virtual address
space.
� The kernel copies the parent process’s VMA descriptors,

then creates a new set of page tables for the child.
� The parent’s page tables are copies directly into the child’s,

with the reference count of each page covered being
incremented.

� After the fork, the parent and child share the same physical
pages of memory in their address spaces.

Silberschatz, Galvin and Gagne 200220.32Operating System Concepts

Virtual Memory (Cont.)

� The VM paging system relocates pages of memory from
physical memory out to disk when the memory is needed
for something else.

� The VM paging system can be divided into two sections:
� The pageout-policy algorithm decides which pages to write

out to disk, and when.
� The paging mechanism actually carries out the transfer, and

pages data back into physical memory as needed.

17

Silberschatz, Galvin and Gagne 200220.33Operating System Concepts

Executing and Loading User Programs

� Linux maintains a table of functions for loading programs;
it gives each function the opportunity to try loading the
given file when an exec system call is made.

� The registration of multiple loader routines allows Linux to
support both the ELF and a.out binary formats.

� Initially, binary-file pages are mapped into virtual memory;
only when a program tries to access a given page will a
page fault result in that page being loaded into physical
memory.

� An ELF-format binary file consists of a header followed by
several page-aligned sections; the ELF loader works by
reading the header and mapping the sections of the file
into separate regions of virtual memory.

Silberschatz, Galvin and Gagne 200220.34Operating System Concepts

Memory Layout for ELF Programs

18

Silberschatz, Galvin and Gagne 200220.35Operating System Concepts

Static and Dynamic Linking

� A program whose necessary library functions are
embedded directly in the program’s executable binary file
is statically linked to its libraries.

� The main disadvantage of static linkage is that every
program generated must contain copies of exactly the
same common system library functions.

� Dynamic linking is more efficient in terms of both physical
memory and disk-space usage because it loads the
system libraries into memory only once.

Silberschatz, Galvin and Gagne 200220.36Operating System Concepts

File Systems

� To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics.

� Internally, the kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS).

� The Linux VFS is designed around object-oriented
principles and is composed of two components:
� A set of definitions that define what a file object is allowed to

look like
� The inode-object and the file-object structures represent

individual files

� the file system object represents an entire file system
� A layer of software to manipulate those objects.

19

Silberschatz, Galvin and Gagne 200220.37Operating System Concepts

The Linux Ext2fs File System

� Ext2fs uses a mechanism similar to that of BSD Fast
File System (ffs) for locating data blocks belonging to a
specific file.

� The main differences between ext2fs and ffs concern
their disk allocation policies.
� In ffs, the disk is allocated to files in blocks of 8Kb, with

blocks being subdivided into fragments of 1Kb to store
small files or partially filled blocks at the end of a file.

� Ext2fs does not use fragments; it performs its allocations
in smaller units. The default block size on ext2fs is 1Kb,
although 2Kb and 4Kb blocks are also supported.

� Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation.

Silberschatz, Galvin and Gagne 200220.38Operating System Concepts

Input and Output

� The Linux device-oriented file system accesses disk
storage through two caches:
� Data is cached in the page cache, which is unified with the

virtual memory system

� Metadata is cached in the buffer cache, a separate cache
indexed by the physical disk block.

� Linux splits all devices into three classes:
� block devices allow random access to completely

independent, fixed size blocks of data
� character devices include most other devices; they don’t

need to support the functionality of regular files.

� network devices are interfaced via the kernel’s networking
subsystem

20

Silberschatz, Galvin and Gagne 200220.39Operating System Concepts

Interprocess Communication

� Like UNIX, Linux informs processes that an event has
occurred via signals.

� There is a limited number of signals, and they cannot
carry information: Only the fact that a signal occurred is
available to a process.

� The Linux kernel does not use signals to communicate
with processes with are running in kernel mode, rather,
communication within the kernel is accomplished via
scheduling states and wait.queue structures.

Silberschatz, Galvin and Gagne 200220.40Operating System Concepts

Passing Data Between Processes

� The pipe mechanism allows a child process to inherit a
communication channel to its parent, data written to one
end of the pipe can be read a the other.

� Shared memory offers an extremely fast way of
communicating; any data written by one process to a
shared memory region can be read immediately by any
other process that has mapped that region into its
address space.

� To obtain synchronization, however, shared memory
must be used in conjunction with another Interprocess-
communication mechanism.

21

Silberschatz, Galvin and Gagne 200220.41Operating System Concepts

Network Structure

� Networking is a key area of functionality for Linux.
� It supports the standard Internet protocols for UNIX to UNIX

communications.

� It also implements protocols native to nonUNIX operating
systems, in particular, protocols used on PC networks, such
as Appletalk and IPX.

� Internally, networking in the Linux kernel is implemented
by three layers of software:
� The socket interface
� Protocol drivers

� Network device drivers

Silberschatz, Galvin and Gagne 200220.42Operating System Concepts

Network Structure (Cont.)

� The most important set of protocols in the Linux
networking system is the internet protocol suite.
� It implements routing between different hosts anywhere on

the network.

� On top of the routing protocol are built the UDP, TCP and
ICMP protocols.

22

Silberschatz, Galvin and Gagne 200220.43Operating System Concepts

Security

� The pluggable authentication modules (PAM) system is
available under Linux.

� PAM is based on a shared library that can be used by any
system component that needs to authenticate users.

� Access control under UNIX systems, including Linux, is
performed through the use of unique numeric identifiers
(uid and gid).

� Access control is performed by assigning objects a
protections mask, which specifies which access modes—
read, write, or execute—are to be granted to processes
with owner, group, or world access.

Silberschatz, Galvin and Gagne 200220.44Operating System Concepts

Security (Cont.)

� Linux augments the standard UNIX setuid mechanism in
two ways:
� It implements the POSIX specification’s saved user-id

mechanism, which allows a process to repeatedly drop and
reacquire its effective uid.

� It has added a process characteristic that grants just a
subset of the rights of the effective uid.

� Linux provides another mechanism that allows a client to
selectively pass access to a single file to some server
process without granting it any other privileges.

