
Silberschatz, Galvin and Gagne 20024.1Operating System Concepts

Chapter 4: Processes

� Process Concept

� Process Scheduling
� Operations on Processes

� Cooperating Processes

� Interprocess Communication

� Communication in Client-Server Systems

Silberschatz, Galvin and Gagne 20024.2Operating System Concepts

Process Concept

� An operating system executes a variety of programs:
� Batch system – jobs
� Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost
interchangeably.

� Process – a program in execution; process execution
must progress in sequential fashion.

� A process includes:
� program counter
� stack
� data section

Silberschatz, Galvin and Gagne 20024.3Operating System Concepts

Process State

� As a process executes, it changes state
� new: The process is being created.

� running: Instructions are being executed.
� waiting: The process is waiting for some event to occur.
� ready: The process is waiting to be assigned to a process.

� terminated: The process has finished execution.

Silberschatz, Galvin and Gagne 20024.4Operating System Concepts

Diagram of Process State

Silberschatz, Galvin and Gagne 20024.5Operating System Concepts

Process Control Block (PCB)

Information associated with each process.

� Process state

� Program counter

� CPU registers

� CPU scheduling information
� Memory-management information

� Accounting information

� I/O status information

Silberschatz, Galvin and Gagne 20024.6Operating System Concepts

Process Control Block (PCB)

Silberschatz, Galvin and Gagne 20024.7Operating System Concepts

CPU Switch From Process to Process

Silberschatz, Galvin and Gagne 20024.8Operating System Concepts

Process Scheduling Queues

� Job queue – set of all processes in the system.

� Ready queue – set of all processes residing in main
memory, ready and waiting to execute.

� Device queues – set of processes waiting for an I/O
device.

� Process migration between the various queues.

Silberschatz, Galvin and Gagne 20024.9Operating System Concepts

Ready Queue And Various I/O Device Queues

Silberschatz, Galvin and Gagne 20024.10Operating System Concepts

Representation of Process Scheduling

Silberschatz, Galvin and Gagne 20024.11Operating System Concepts

Schedulers

� Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

� Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Silberschatz, Galvin and Gagne 20024.12Operating System Concepts

Schedulers (Cont.)

� Short-term scheduler is invoked very frequently
(milliseconds) � (must be fast).

� Long-term scheduler is invoked very infrequently
(seconds, minutes) � (may be slow).

� The long-term scheduler controls the degree of
multiprogramming.

� Processes can be described as either:
� I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

� CPU-bound process – spends more time doing
computations; few very long CPU bursts.

Silberschatz, Galvin and Gagne 20024.13Operating System Concepts

Context Switch

� When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

� Context-switch time is overhead; the system does no
useful work while switching.

� Time dependent on hardware support.

Silberschatz, Galvin and Gagne 20024.14Operating System Concepts

Process Creation

� Parent process create children processes, which, in turn
create other processes, forming a tree of processes.

� Resource sharing
� Parent and children share all resources.
� Children share subset of parent’s resources.
� Parent and child share no resources.

� Execution
� Parent and children execute concurrently.

� Parent waits until children terminate.

Silberschatz, Galvin and Gagne 20024.15Operating System Concepts

Process Creation (Cont.)

� Address space
� Child duplicate of parent.
� Child has a program loaded into it.

� UNIX examples
� fork system call creates new process

� exec system call used after a fork to replace the process’
memory space with a new program.

Silberschatz, Galvin and Gagne 20024.16Operating System Concepts

Processes Tree on a UNIX System

Silberschatz, Galvin and Gagne 20024.17Operating System Concepts

Process Termination

� Process executes last statement and asks the operating
system to decide it (exit).
� Output data from child to parent (via wait).
� Process’ resources are deallocated by operating system.

� Parent may terminate execution of children processes
(abort).
� Child has exceeded allocated resources.

� Task assigned to child is no longer required.
� Parent is exiting.

� Operating system does not allow child to continue if its
parent terminates.

� Cascading termination.

Silberschatz, Galvin and Gagne 20024.18Operating System Concepts

Cooperating Processes

� Independent process cannot affect or be affected by the
execution of another process.

� Cooperating process can affect or be affected by the
execution of another process

� Advantages of process cooperation
� Information sharing

� Computation speed-up
� Modularity
� Convenience

Silberschatz, Galvin and Gagne 20024.19Operating System Concepts

Interprocess Communication (IPC)

� Mechanism for processes to communicate and to
synchronize their actions.

� Message system – processes communicate with each
other without resorting to shared variables.

� IPC facility provides two operations:
� send(message) – message size fixed or variable

� receive(message)

� If P and Q wish to communicate, they need to:
� establish a communication link between them
� exchange messages via send/receive

� Implementation of communication link
� physical (e.g., shared memory, hardware bus)

� logical (e.g., logical properties)

Silberschatz, Galvin and Gagne 20024.20Operating System Concepts

Synchronization

� Message passing may be either blocking or non-blocking.
� Blocking is considered synchronous
� Non-blocking is considered asynchronous
� send and receive primitives may be either blocking or

non-blocking.

Silberschatz, Galvin and Gagne 20024.21Operating System Concepts

Buffering

� Queue of messages attached to the link; implemented in
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

Silberschatz, Galvin and Gagne 20024.22Operating System Concepts

Client-Server Communication

� Sockets
� Remote Procedure Calls

� Remote Method Invocation (Java)

Silberschatz, Galvin and Gagne 20024.23Operating System Concepts

Sockets

� A socket is defined as an endpoint for communication.
� Concatenation of IP address and port

� The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

� Communication consists between a pair of sockets.

Silberschatz, Galvin and Gagne 20024.24Operating System Concepts

Socket Communication

Silberschatz, Galvin and Gagne 20024.25Operating System Concepts

Remote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the
server.

� The client-side stub locates the server and marshalls the
parameters.

� The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on
the server.

Silberschatz, Galvin and Gagne 20024.26Operating System Concepts

Execution of RPC

Silberschatz, Galvin and Gagne 20025.27Operating System Concepts

Chapter 5: Threads

� Overview

� Multithreading Models
� Threading Issues

� Pthreads

� Solaris 2 Threads

� Windows 2000 Threads
� Linux Threads

� Java Threads

Silberschatz, Galvin and Gagne 20025.28Operating System Concepts

Single and Multithreaded Processes

Silberschatz, Galvin and Gagne 20025.29Operating System Concepts

Benefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures

Silberschatz, Galvin and Gagne 20025.30Operating System Concepts

User Threads

� Thread management done by user-level threads library

� Examples
- POSIX Pthreads

- Mach C-threads

- Solaris threads

Silberschatz, Galvin and Gagne 20025.31Operating System Concepts

Kernel Threads

� Supported by the Kernel

� Examples
- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS
- Linux

Silberschatz, Galvin and Gagne 20025.32Operating System Concepts

Multithreading Models

� Many-to-One

� One-to-One

� Many-to-Many

Silberschatz, Galvin and Gagne 20025.33Operating System Concepts

Many-to-One

� Many user-level threads mapped to single kernel thread.

� Used on systems that do not support kernel threads.

Silberschatz, Galvin and Gagne 20025.34Operating System Concepts

Many-to-One Model

Silberschatz, Galvin and Gagne 20025.35Operating System Concepts

One-to-One

� Each user-level thread maps to kernel thread.

� Examples
- Windows 95/98/NT/2000

- OS/2

Silberschatz, Galvin and Gagne 20025.36Operating System Concepts

One-to-one Model

Silberschatz, Galvin and Gagne 20025.37Operating System Concepts

Many-to-Many Model

� Allows many user level threads to be mapped to many
kernel threads.

� Allows the operating system to create a sufficient number
of kernel threads.

� Solaris 2

� Windows NT/2000 with the ThreadFiber package

Silberschatz, Galvin and Gagne 20025.38Operating System Concepts

Many-to-Many Model

Silberschatz, Galvin and Gagne 20025.39Operating System Concepts

Threading Issues

� Semantics of fork() and exec() system calls.

� Thread cancellation.
� Signal handling

� Thread pools

� Thread specific data

Silberschatz, Galvin and Gagne 20026.40Operating System Concepts

Chapter 6: CPU Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Multiple-Processor Scheduling
� Real-Time Scheduling

� Algorithm Evaluation

Silberschatz, Galvin and Gagne 20026.41Operating System Concepts

Basic Concepts

� Maximum CPU utilization obtained with multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

� CPU burst distribution

Silberschatz, Galvin and Gagne 20026.42Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne 20026.43Operating System Concepts

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne 20026.44Operating System Concepts

CPU Scheduler

� Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.

3. Switches from waiting to ready.
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.

� All other scheduling is preemptive.

Silberschatz, Galvin and Gagne 20026.45Operating System Concepts

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
� switching context

� switching to user mode
� jumping to the proper location in the user program to restart

that program

� Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

Silberschatz, Galvin and Gagne 20026.46Operating System Concepts

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their
execution per time unit

� Turnaround time – amount of time to execute a particular
process

� Waiting time – amount of time a process has been waiting
in the ready queue

� Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

Silberschatz, Galvin and Gagne 20026.47Operating System Concepts

Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time
� Min waiting time

� Min response time

Silberschatz, Galvin and Gagne 20026.48Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3
P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and Gagne 20026.49Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time: (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300

Silberschatz, Galvin and Gagne 20026.50Operating System Concepts

Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

� Two schemes:
� nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.

� preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for
a given set of processes.

Silberschatz, Galvin and Gagne 20026.51Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Silberschatz, Galvin and Gagne 20026.52Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and Gagne 20026.53Operating System Concepts

Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts,
using exponential averaging.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Silberschatz, Galvin and Gagne 20026.54Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne 20026.55Operating System Concepts

Examples of Exponential Averaging

� α =0
� τn+1 = τn

� Recent history does not count.

� α =1
� τn+1 = tn
� Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Silberschatz, Galvin and Gagne 20026.56Operating System Concepts

Priority Scheduling

� A priority number (integer) is associated with each
process

� The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).
� Preemptive
� nonpreemptive

� SJF is a priority scheduling where priority is the predicted
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never
execute.

� Solution ≡ Aging – as time progresses increase the
priority of the process.

Silberschatz, Galvin and Gagne 20026.57Operating System Concepts

Round Robin (RR)

� Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

� Performance
� q large � FIFO
� q small � q must be large with respect to context switch,

otherwise overhead is too high.

Silberschatz, Galvin and Gagne 20026.58Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17
P3 68

P4 24

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and Gagne 20026.59Operating System Concepts

Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
� Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
� Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

� 20% to background in FCFS

Silberschatz, Galvin and Gagne 20026.60Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne 20026.61Operating System Concepts

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Homogeneous processors within a multiprocessor.

� Load sharing
� Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need
for data sharing.

Silberschatz, Galvin and Gagne 20026.62Operating System Concepts

Real-Time Scheduling

� Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

Silberschatz, Galvin and Gagne 20026.63Operating System Concepts

Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

� Queueing models

� Implementation

