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Chapter 4:  Processes

� Process Concept

� Process Scheduling
� Operations on Processes

� Cooperating Processes

� Interprocess Communication

� Communication in Client-Server Systems
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Process Concept

� An operating system executes a variety of programs:
� Batch system – jobs
� Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost 
interchangeably.

� Process – a program in execution; process execution 
must progress in sequential fashion.

� A process includes:
� program counter 
� stack
� data section
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Process State

� As a process executes, it changes state
� new:  The process is being created.

� running:  Instructions are being executed.
� waiting:  The process is waiting for some event to occur.
� ready:  The process is waiting to be assigned to a process.

� terminated:  The process has finished execution.
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Diagram of Process State
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Process Control Block (PCB)

Information associated with each process.

� Process state

� Program counter

� CPU registers

� CPU scheduling information
� Memory-management information

� Accounting information

� I/O status information
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Process Control Block (PCB)
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CPU Switch From Process to Process
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Process Scheduling Queues

� Job queue – set of all processes in the system.

� Ready queue – set of all processes residing in main 
memory, ready and waiting to execute.

� Device queues – set of processes waiting for an I/O 
device.

� Process migration between the various queues.
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Ready Queue And Various I/O Device Queues
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Representation of Process Scheduling
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Schedulers

� Long-term scheduler (or job scheduler) – selects which 
processes should be brought into the ready queue.

� Short-term scheduler (or CPU scheduler) – selects which 
process should be executed next and allocates CPU.
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Schedulers (Cont.)

� Short-term scheduler is invoked very frequently 
(milliseconds) � (must be fast).

� Long-term scheduler is invoked very infrequently 
(seconds, minutes) � (may be slow).

� The long-term scheduler controls the degree of 
multiprogramming.

� Processes can be described as either:
� I/O-bound process – spends more time doing I/O than 

computations, many short CPU bursts.

� CPU-bound process – spends more time doing 
computations; few very long CPU bursts.
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Context Switch

� When CPU switches to another process, the system must 
save the state of the old process and load the saved state 
for the new process.

� Context-switch time is overhead; the system does no 
useful work while switching.

� Time dependent on hardware support.
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Process Creation

� Parent process create children processes, which, in turn 
create other processes, forming a tree of processes.

� Resource sharing
� Parent and children share all resources.
� Children share subset of parent’s resources.
� Parent and child share no resources.

� Execution
� Parent and children execute concurrently.

� Parent waits until children terminate.
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Process Creation (Cont.)

� Address space
� Child duplicate of parent.
� Child has a program loaded into it.

� UNIX examples
� fork system call creates new process

� exec system call used after a fork to replace the process’ 
memory space with a new program.
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Processes Tree on a UNIX System
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Process Termination

� Process executes last statement and asks the operating 
system to decide it (exit).
� Output data from child to parent (via wait).
� Process’ resources are deallocated by operating system.

� Parent may terminate execution of children processes 
(abort).
� Child has exceeded allocated resources.

� Task assigned to child is no longer required.
� Parent is exiting.

� Operating system does not allow child to continue if its 
parent terminates.

� Cascading termination.
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Cooperating Processes

� Independent process cannot affect or be affected by the 
execution of another process.

� Cooperating process can affect or be affected by the 
execution of another process

� Advantages of process cooperation
� Information sharing 

� Computation speed-up
� Modularity
� Convenience
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Interprocess Communication (IPC)

� Mechanism for processes to communicate and to 
synchronize their actions.

� Message system – processes communicate with each 
other without resorting to shared variables.

� IPC facility provides two operations:
� send(message) – message size fixed or variable 

� receive(message)

� If P and Q wish to communicate, they need to:
� establish a communication link between them
� exchange messages via send/receive

� Implementation of communication link
� physical (e.g., shared memory, hardware bus)

� logical (e.g., logical properties)
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Synchronization

� Message passing may be either blocking or non-blocking.
� Blocking is considered synchronous
� Non-blocking is considered asynchronous
� send and receive primitives may be either blocking or 

non-blocking.
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Buffering

� Queue of messages attached to the link; implemented in 
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length 
Sender never waits.
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Client-Server Communication

� Sockets
� Remote Procedure Calls

� Remote Method Invocation (Java)
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Sockets

� A socket is defined as an endpoint for communication.
� Concatenation of IP address and port

� The socket 161.25.19.8:1625 refers to port 1625 on host 
161.25.19.8

� Communication consists between a pair of sockets.
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Socket Communication
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Remote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls 
between processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the 
server.

� The client-side stub locates the server and marshalls the 
parameters.

� The server-side stub receives this message, unpacks the 
marshalled parameters, and peforms the procedure on 
the server.
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Execution of RPC
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Chapter 5: Threads

� Overview

� Multithreading Models
� Threading Issues

� Pthreads

� Solaris 2 Threads

� Windows 2000 Threads
� Linux Threads

� Java Threads
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Single and Multithreaded Processes
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Benefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures
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User Threads

� Thread management done by user-level threads library

� Examples
- POSIX Pthreads

- Mach C-threads

- Solaris threads
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Kernel Threads

� Supported by the Kernel

� Examples
- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS
- Linux
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Multithreading Models

� Many-to-One

� One-to-One

� Many-to-Many
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Many-to-One

� Many user-level threads mapped to single kernel thread.

� Used on systems that do not support kernel threads.
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Many-to-One Model
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One-to-One

� Each user-level thread maps to kernel thread.

� Examples
- Windows 95/98/NT/2000

- OS/2
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One-to-one Model
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Many-to-Many Model

� Allows many user level threads to be mapped to many 
kernel threads.

� Allows the  operating system to create a sufficient number 
of kernel threads.

� Solaris 2 

� Windows NT/2000 with the ThreadFiber package
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Many-to-Many Model
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Threading Issues

� Semantics of fork() and exec() system calls.

� Thread cancellation.
� Signal handling

� Thread pools

� Thread specific data
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Chapter 6:  CPU Scheduling

� Basic Concepts

� Scheduling Criteria 

� Scheduling Algorithms

� Multiple-Processor Scheduling
� Real-Time Scheduling

� Algorithm Evaluation
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Basic Concepts

� Maximum CPU utilization obtained with multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a 
cycle of CPU execution and I/O wait.

� CPU burst distribution
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Alternating Sequence of CPU And I/O Bursts
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Histogram of CPU-burst Times
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CPU Scheduler

� Selects from among the processes in memory that are 
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a 
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.

3. Switches from waiting to ready.
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.

� All other scheduling is preemptive.
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Dispatcher

� Dispatcher module gives control of the CPU to the 
process selected by the short-term scheduler; this 
involves:
� switching context

� switching to user mode
� jumping to the proper location in the user program to restart 

that program

� Dispatch latency – time it takes for the dispatcher to stop 
one process and start another running.
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Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their 
execution per time unit

� Turnaround time – amount of time to execute a particular 
process

� Waiting time – amount of time a process has been waiting 
in the ready queue

� Response time – amount of time it takes from when a 
request was submitted until the first response is 
produced, not output  (for time-sharing environment)
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Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time 
� Min waiting time 

� Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3
P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time:   (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300
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Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU 
burst.  Use these lengths to schedule the process with the 
shortest time.

� Two schemes: 
� nonpreemptive – once CPU given to the process it cannot 

be preempted until completes its CPU burst.

� preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, 
preempt.  This scheme is know as the 
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for 
a given set of processes.
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Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts, 
using exponential averaging.
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Prediction of the Length of the Next CPU Burst
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Examples of Exponential Averaging

� α =0
� τn+1 = τn

� Recent history does not count.

� α =1
� τn+1 = tn
� Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α )j α tn -1 + …
+(1 - α )n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor.
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Priority Scheduling

� A priority number (integer) is associated with each 
process

� The CPU is allocated to the process with the highest 
priority (smallest integer ≡ highest priority).
� Preemptive
� nonpreemptive

� SJF is a priority scheduling where priority is the predicted 
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never 
execute.

� Solution ≡ Aging – as time progresses increase the 
priority of the process.
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Round Robin (RR)

� Each process gets a small unit of CPU time (time 
quantum), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to the 
end of the ready queue.

� If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units.

� Performance
� q large � FIFO
� q small � q must be large with respect to context switch, 

otherwise overhead is too high.
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Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17
P3 68

P4 24

� The Gantt chart is: 

� Typically, higher average turnaround than SJF, but better 
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
� Fixed priority scheduling; (i.e., serve all from foreground 

then from background).  Possibility of starvation.
� Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR

� 20% to background in FCFS 
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Multilevel Queue Scheduling
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Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are 
available.

� Homogeneous processors within a multiprocessor.

� Load sharing
� Asymmetric multiprocessing – only one processor 

accesses the system data structures, alleviating the need 
for data sharing.
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Real-Time Scheduling

� Hard real-time systems – required to complete a critical 
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes 
receive priority over less fortunate ones.
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Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined 
workload and defines the performance of each algorithm  
for that workload.

� Queueing models

� Implementation


