
Silberschatz, Galvin and Gagne 20024.1Operating System Concepts

Chapter 4: Processes

� Process Concept

� Process Scheduling
� Operations on Processes

� Cooperating Processes

� Interprocess Communication

� Communication in Client-Server Systems

Silberschatz, Galvin and Gagne 20024.2Operating System Concepts

Process Concept

� An operating system executes a variety of programs:
� Batch system – jobs
� Time-shared systems – user programs or tasks

� Textbook uses the terms job and process almost
interchangeably.

� Process – a program in execution; process execution
must progress in sequential fashion.

� A process includes:
� program counter
� stack
� data section

Silberschatz, Galvin and Gagne 20024.3Operating System Concepts

Process State

� As a process executes, it changes state
� new: The process is being created.

� running: Instructions are being executed.
� waiting: The process is waiting for some event to occur.
� ready: The process is waiting to be assigned to a process.

� terminated: The process has finished execution.

Silberschatz, Galvin and Gagne 20024.4Operating System Concepts

Diagram of Process State

Silberschatz, Galvin and Gagne 20024.5Operating System Concepts

Process Control Block (PCB)

Information associated with each process.

� Process state

� Program counter

� CPU registers

� CPU scheduling information
� Memory-management information

� Accounting information

� I/O status information

Silberschatz, Galvin and Gagne 20024.6Operating System Concepts

Process Control Block (PCB)

Silberschatz, Galvin and Gagne 20024.7Operating System Concepts

CPU Switch From Process to Process

Silberschatz, Galvin and Gagne 20024.8Operating System Concepts

Process Scheduling Queues

� Job queue – set of all processes in the system.

� Ready queue – set of all processes residing in main
memory, ready and waiting to execute.

� Device queues – set of processes waiting for an I/O
device.

� Process migration between the various queues.

Silberschatz, Galvin and Gagne 20024.9Operating System Concepts

Ready Queue And Various I/O Device Queues

Silberschatz, Galvin and Gagne 20024.10Operating System Concepts

Representation of Process Scheduling

Silberschatz, Galvin and Gagne 20024.11Operating System Concepts

Schedulers

� Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue.

� Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU.

Silberschatz, Galvin and Gagne 20024.12Operating System Concepts

Schedulers (Cont.)

� Short-term scheduler is invoked very frequently
(milliseconds) � (must be fast).

� Long-term scheduler is invoked very infrequently
(seconds, minutes) � (may be slow).

� The long-term scheduler controls the degree of
multiprogramming.

� Processes can be described as either:
� I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

� CPU-bound process – spends more time doing
computations; few very long CPU bursts.

Silberschatz, Galvin and Gagne 20024.13Operating System Concepts

Context Switch

� When CPU switches to another process, the system must
save the state of the old process and load the saved state
for the new process.

� Context-switch time is overhead; the system does no
useful work while switching.

� Time dependent on hardware support.

Silberschatz, Galvin and Gagne 20024.14Operating System Concepts

Process Creation

� Parent process create children processes, which, in turn
create other processes, forming a tree of processes.

� Resource sharing
� Parent and children share all resources.
� Children share subset of parent’s resources.
� Parent and child share no resources.

� Execution
� Parent and children execute concurrently.

� Parent waits until children terminate.

Silberschatz, Galvin and Gagne 20024.15Operating System Concepts

Process Creation (Cont.)

� Address space
� Child duplicate of parent.
� Child has a program loaded into it.

� UNIX examples
� fork system call creates new process

� exec system call used after a fork to replace the process’
memory space with a new program.

Silberschatz, Galvin and Gagne 20024.16Operating System Concepts

Processes Tree on a UNIX System

Silberschatz, Galvin and Gagne 20024.17Operating System Concepts

Process Termination

� Process executes last statement and asks the operating
system to decide it (exit).
� Output data from child to parent (via wait).
� Process’ resources are deallocated by operating system.

� Parent may terminate execution of children processes
(abort).
� Child has exceeded allocated resources.

� Task assigned to child is no longer required.
� Parent is exiting.

� Operating system does not allow child to continue if its
parent terminates.

� Cascading termination.

Silberschatz, Galvin and Gagne 20024.18Operating System Concepts

Cooperating Processes

� Independent process cannot affect or be affected by the
execution of another process.

� Cooperating process can affect or be affected by the
execution of another process

� Advantages of process cooperation
� Information sharing

� Computation speed-up
� Modularity
� Convenience

Silberschatz, Galvin and Gagne 20024.19Operating System Concepts

Interprocess Communication (IPC)

� Mechanism for processes to communicate and to
synchronize their actions.

� Message system – processes communicate with each
other without resorting to shared variables.

� IPC facility provides two operations:
� send(message) – message size fixed or variable

� receive(message)

� If P and Q wish to communicate, they need to:
� establish a communication link between them
� exchange messages via send/receive

� Implementation of communication link
� physical (e.g., shared memory, hardware bus)

� logical (e.g., logical properties)

Silberschatz, Galvin and Gagne 20024.20Operating System Concepts

Synchronization

� Message passing may be either blocking or non-blocking.
� Blocking is considered synchronous
� Non-blocking is considered asynchronous
� send and receive primitives may be either blocking or

non-blocking.

Silberschatz, Galvin and Gagne 20024.21Operating System Concepts

Buffering

� Queue of messages attached to the link; implemented in
one of three ways.
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous).
2. Bounded capacity – finite length of n messages

Sender must wait if link full.

3. Unbounded capacity – infinite length
Sender never waits.

Silberschatz, Galvin and Gagne 20024.22Operating System Concepts

Client-Server Communication

� Sockets
� Remote Procedure Calls

� Remote Method Invocation (Java)

Silberschatz, Galvin and Gagne 20024.23Operating System Concepts

Sockets

� A socket is defined as an endpoint for communication.
� Concatenation of IP address and port

� The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

� Communication consists between a pair of sockets.

Silberschatz, Galvin and Gagne 20024.24Operating System Concepts

Socket Communication

Silberschatz, Galvin and Gagne 20024.25Operating System Concepts

Remote Procedure Calls

� Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

� Stubs – client-side proxy for the actual procedure on the
server.

� The client-side stub locates the server and marshalls the
parameters.

� The server-side stub receives this message, unpacks the
marshalled parameters, and peforms the procedure on
the server.

Silberschatz, Galvin and Gagne 20024.26Operating System Concepts

Execution of RPC

Silberschatz, Galvin and Gagne 20025.27Operating System Concepts

Chapter 5: Threads

� Overview

� Multithreading Models
� Threading Issues

� Pthreads

� Solaris 2 Threads

� Windows 2000 Threads
� Linux Threads

� Java Threads

Silberschatz, Galvin and Gagne 20025.28Operating System Concepts

Single and Multithreaded Processes

Silberschatz, Galvin and Gagne 20025.29Operating System Concepts

Benefits

� Responsiveness

� Resource Sharing

� Economy

� Utilization of MP Architectures

Silberschatz, Galvin and Gagne 20025.30Operating System Concepts

User Threads

� Thread management done by user-level threads library

� Examples
- POSIX Pthreads

- Mach C-threads

- Solaris threads

Silberschatz, Galvin and Gagne 20025.31Operating System Concepts

Kernel Threads

� Supported by the Kernel

� Examples
- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS
- Linux

Silberschatz, Galvin and Gagne 20025.32Operating System Concepts

Multithreading Models

� Many-to-One

� One-to-One

� Many-to-Many

Silberschatz, Galvin and Gagne 20025.33Operating System Concepts

Many-to-One

� Many user-level threads mapped to single kernel thread.

� Used on systems that do not support kernel threads.

Silberschatz, Galvin and Gagne 20025.34Operating System Concepts

Many-to-One Model

Silberschatz, Galvin and Gagne 20025.35Operating System Concepts

One-to-One

� Each user-level thread maps to kernel thread.

� Examples
- Windows 95/98/NT/2000

- OS/2

Silberschatz, Galvin and Gagne 20025.36Operating System Concepts

One-to-one Model

Silberschatz, Galvin and Gagne 20025.37Operating System Concepts

Many-to-Many Model

� Allows many user level threads to be mapped to many
kernel threads.

� Allows the operating system to create a sufficient number
of kernel threads.

� Solaris 2

� Windows NT/2000 with the ThreadFiber package

Silberschatz, Galvin and Gagne 20025.38Operating System Concepts

Many-to-Many Model

Silberschatz, Galvin and Gagne 20025.39Operating System Concepts

Threading Issues

� Semantics of fork() and exec() system calls.

� Thread cancellation.
� Signal handling

� Thread pools

� Thread specific data

Silberschatz, Galvin and Gagne 20026.40Operating System Concepts

Chapter 6: CPU Scheduling

� Basic Concepts

� Scheduling Criteria

� Scheduling Algorithms

� Multiple-Processor Scheduling
� Real-Time Scheduling

� Algorithm Evaluation

Silberschatz, Galvin and Gagne 20026.41Operating System Concepts

Basic Concepts

� Maximum CPU utilization obtained with multiprogramming

� CPU–I/O Burst Cycle – Process execution consists of a
cycle of CPU execution and I/O wait.

� CPU burst distribution

Silberschatz, Galvin and Gagne 20026.42Operating System Concepts

Alternating Sequence of CPU And I/O Bursts

Silberschatz, Galvin and Gagne 20026.43Operating System Concepts

Histogram of CPU-burst Times

Silberschatz, Galvin and Gagne 20026.44Operating System Concepts

CPU Scheduler

� Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

� CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.

3. Switches from waiting to ready.
4. Terminates.

� Scheduling under 1 and 4 is nonpreemptive.

� All other scheduling is preemptive.

Silberschatz, Galvin and Gagne 20026.45Operating System Concepts

Dispatcher

� Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
� switching context

� switching to user mode
� jumping to the proper location in the user program to restart

that program

� Dispatch latency – time it takes for the dispatcher to stop
one process and start another running.

Silberschatz, Galvin and Gagne 20026.46Operating System Concepts

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their
execution per time unit

� Turnaround time – amount of time to execute a particular
process

� Waiting time – amount of time a process has been waiting
in the ready queue

� Response time – amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

Silberschatz, Galvin and Gagne 20026.47Operating System Concepts

Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time
� Min waiting time

� Min response time

Silberschatz, Galvin and Gagne 20026.48Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3
P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and Gagne 20026.49Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time: (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300

Silberschatz, Galvin and Gagne 20026.50Operating System Concepts

Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

� Two schemes:
� nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst.

� preemptive – if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for
a given set of processes.

Silberschatz, Galvin and Gagne 20026.51Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Silberschatz, Galvin and Gagne 20026.52Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and Gagne 20026.53Operating System Concepts

Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts,
using exponential averaging.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Silberschatz, Galvin and Gagne 20026.54Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and Gagne 20026.55Operating System Concepts

Examples of Exponential Averaging

� α =0
� τn+1 = τn

� Recent history does not count.

� α =1
� τn+1 = tn
� Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Silberschatz, Galvin and Gagne 20026.56Operating System Concepts

Priority Scheduling

� A priority number (integer) is associated with each
process

� The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority).
� Preemptive
� nonpreemptive

� SJF is a priority scheduling where priority is the predicted
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never
execute.

� Solution ≡ Aging – as time progresses increase the
priority of the process.

Silberschatz, Galvin and Gagne 20026.57Operating System Concepts

Round Robin (RR)

� Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

� If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process
waits more than (n-1)q time units.

� Performance
� q large � FIFO
� q small � q must be large with respect to context switch,

otherwise overhead is too high.

Silberschatz, Galvin and Gagne 20026.58Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17
P3 68

P4 24

� The Gantt chart is:

� Typically, higher average turnaround than SJF, but better
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and Gagne 20026.59Operating System Concepts

Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
� Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
� Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

� 20% to background in FCFS

Silberschatz, Galvin and Gagne 20026.60Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and Gagne 20026.61Operating System Concepts

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are
available.

� Homogeneous processors within a multiprocessor.

� Load sharing
� Asymmetric multiprocessing – only one processor

accesses the system data structures, alleviating the need
for data sharing.

Silberschatz, Galvin and Gagne 20026.62Operating System Concepts

Real-Time Scheduling

� Hard real-time systems – required to complete a critical
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes
receive priority over less fortunate ones.

Silberschatz, Galvin and Gagne 20026.63Operating System Concepts

Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined
workload and defines the performance of each algorithm
for that workload.

� Queueing models

� Implementation

