
Silberschatz, Galvin and  Gagne 20026.1Operating System Concepts

Scheduling Criteria

� CPU utilization – keep the CPU as busy as possible

� Throughput – # of processes that complete their 
execution per time unit

� Turnaround time – amount of time to execute a particular 
process

� Waiting time – amount of time a process has been waiting 
in the ready queue

� Response time – amount of time it takes from when a 
request was submitted until the first response is 
produced, not output  (for time-sharing environment)

Silberschatz, Galvin and  Gagne 20026.2Operating System Concepts

Optimization Criteria

� Max CPU utilization

� Max throughput

� Min turnaround time 
� Min waiting time 

� Min response time



Silberschatz, Galvin and  Gagne 20026.3Operating System Concepts

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3
P3 3

� Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

� Waiting time for P1 = 0; P2 = 24; P3 = 27

� Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Silberschatz, Galvin and  Gagne 20026.4Operating System Concepts

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

� The Gantt chart for the schedule is:

� Waiting time for P1 = 6; P2 = 0; P3 = 3

� Average waiting time:   (6 + 0 + 3)/3 = 3
� Much better than previous case.

� Convoy effect short process behind long process

P1P3P2

63 300



Silberschatz, Galvin and  Gagne 20026.5Operating System Concepts

Shortest-Job-First (SJR) Scheduling

� Associate with each process the length of its next CPU 
burst.  Use these lengths to schedule the process with the 
shortest time.

� Two schemes: 
� nonpreemptive – once CPU given to the process it cannot 

be preempted until completes its CPU burst.

� preemptive – if a new process arrives with CPU burst length 
less than remaining time of current executing process, 
preempt.  This scheme is know as the 
Shortest-Remaining-Time-First (SRTF).

� SJF is optimal – gives minimum average waiting time for 
a given set of processes.

Silberschatz, Galvin and  Gagne 20026.6Operating System Concepts

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (non-preemptive)

� Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12



Silberschatz, Galvin and  Gagne 20026.7Operating System Concepts

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4
P3 4.0 1

P4 5.0 4

� SJF (preemptive)

� Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Silberschatz, Galvin and  Gagne 20026.8Operating System Concepts

Determining Length of Next CPU Burst

� Can only estimate the length.

� Can be done by using the length of previous CPU bursts, 
using exponential averaging.

:Define  4.

10 ,  3.

burst CPU next the for value predicted   2.

burst CPU of lenght actual  1.

≤≤
=

=

+

αα
τ 1n

th
n nt

( ) .t nnn ταατ −+== 11  



Silberschatz, Galvin and  Gagne 20026.9Operating System Concepts

Prediction of the Length of the Next CPU Burst

Silberschatz, Galvin and  Gagne 20026.10Operating System Concepts

Examples of Exponential Averaging

� α =0
� τn+1 = τn

� Recent history does not count.

� α =1
� τn+1 = tn
� Only the actual last CPU burst counts.

� If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α )j α tn -1 + …
+(1 - α )n=1 tn τ0

� Since both α and (1 - α) are less than or equal to 1, each 
successive term has less weight than its predecessor.



Silberschatz, Galvin and  Gagne 20026.11Operating System Concepts

Priority Scheduling

� A priority number (integer) is associated with each 
process

� The CPU is allocated to the process with the highest 
priority (smallest integer ≡ highest priority).
� Preemptive
� nonpreemptive

� SJF is a priority scheduling where priority is the predicted 
next CPU burst time.

� Problem ≡ Starvation – low priority processes may never 
execute.

� Solution ≡ Aging – as time progresses increase the 
priority of the process.

Silberschatz, Galvin and  Gagne 20026.12Operating System Concepts

Round Robin (RR)

� Each process gets a small unit of CPU time (time 
quantum), usually 10-100 milliseconds.  After this time 
has elapsed, the process is preempted and added to the 
end of the ready queue.

� If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  No process 
waits more than (n-1)q time units.

� Performance
� q large � FIFO
� q small � q must be large with respect to context switch, 

otherwise overhead is too high.



Silberschatz, Galvin and  Gagne 20026.13Operating System Concepts

Example of RR with Time Quantum = 20

Process Burst Time

P1 53

P2 17
P3 68

P4 24

� The Gantt chart is: 

� Typically, higher average turnaround than SJF, but better 
response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Silberschatz, Galvin and  Gagne 20026.14Operating System Concepts

Multilevel Queue

� Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

� Each queue has its own scheduling algorithm, 
foreground – RR
background – FCFS

� Scheduling must be done between the queues.
� Fixed priority scheduling; (i.e., serve all from foreground 

then from background).  Possibility of starvation.
� Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR

� 20% to background in FCFS 



Silberschatz, Galvin and  Gagne 20026.15Operating System Concepts

Multilevel Queue Scheduling

Silberschatz, Galvin and  Gagne 20026.16Operating System Concepts

Multiple-Processor Scheduling

� CPU scheduling more complex when multiple CPUs are 
available.

� Homogeneous processors within a multiprocessor.

� Load sharing
� Asymmetric multiprocessing – only one processor 

accesses the system data structures, alleviating the need 
for data sharing.



Silberschatz, Galvin and  Gagne 20026.17Operating System Concepts

Real-Time Scheduling

� Hard real-time systems – required to complete a critical 
task within a guaranteed amount of time.

� Soft real-time computing – requires that critical processes 
receive priority over less fortunate ones.

Silberschatz, Galvin and  Gagne 20026.18Operating System Concepts

Algorithm Evaluation

� Deterministic modeling – takes a particular predetermined 
workload and defines the performance of each algorithm  
for that workload.

� Queueing models

� Implementation



Silberschatz, Galvin and  Gagne 20027.19Operating System Concepts

Chapter 7:  Process Synchronization

� Background

� The Critical-Section Problem

� Synchronization Hardware

� Semaphores

� Classical Problems of Synchronization
� Critical Regions

� Monitors

� Synchronization in Solaris 2 & Windows 2000

Silberschatz, Galvin and  Gagne 20027.20Operating System Concepts

Background

� Concurrent access to shared data may result in data 
inconsistency.

� Maintaining data consistency requires mechanisms to 
ensure the orderly execution of cooperating processes.

� Shared-memory solution to bounded-butter problem 
(Chapter 4) allows at most n – 1 items in buffer at the 
same time.  A solution, where all N buffers are used is not 
simple.
� Suppose that we modify the producer-consumer code by 

adding a variable counter, initialized to 0 and incremented 
each time a new item is added to the buffer



Silberschatz, Galvin and  Gagne 20027.21Operating System Concepts

Race Condition

� Race condition: The situation where several processes 
access – and manipulate shared data concurrently. The 
final value of the shared data depends upon which 
process finishes last.

� To prevent race conditions, concurrent processes must 
be synchronized.

Silberschatz, Galvin and  Gagne 20027.22Operating System Concepts

The Critical-Section Problem

� n processes all competing to use some shared data

� Each process has a code segment, called critical section, 
in which the shared data is accessed.

� Problem – ensure that when one process is executing in 
its critical section, no other process is allowed to execute 
in its critical section.



Silberschatz, Galvin and  Gagne 20027.23Operating System Concepts

Solution to Critical-Section Problem

1. Mutual Exclusion.  If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections.

2. Progress.  If no process is executing in its critical section 
and there exist some processes that wish to enter their 
critical section, then the selection of the processes that 
will enter the critical section next cannot be postponed 
indefinitely.

3. Bounded Waiting.  A bound must exist on the number of 
times that other processes are allowed to enter their 
critical sections after a process has made a request to 
enter its critical section and before that request is 
granted.
� Assume that each process executes at a nonzero speed 
� No assumption concerning relative speed of the n

processes.

Silberschatz, Galvin and  Gagne 20027.24Operating System Concepts

Synchronization Hardware

� Test and modify the content of a word atomically
.

boolean TestAndSet(boolean &target) {
boolean rv = target;
tqrget = true;

return rv;
}



Silberschatz, Galvin and  Gagne 20027.25Operating System Concepts

Mutual Exclusion with Test-and-Set

� Shared data: 
boolean lock = false;

� Process Pi

do {
while (TestAndSet(lock)) ;

critical section
lock = false;

remainder section

}

Silberschatz, Galvin and  Gagne 20027.26Operating System Concepts

Semaphores

� Synchronization tool that does not require busy waiting.

� Semaphore S – integer variable

� can only be accessed via two indivisible (atomic) 
operations

wait (S):  

while S≤≤≤≤ 0 do no-op;
S--;

signal (S): 

S++;



Silberschatz, Galvin and  Gagne 20027.27Operating System Concepts

Critical Section of n Processes

� Shared data:
semaphore mutex; //initially mutex = 1

� Process Pi: 

do {
wait(mutex);

critical section
signal(mutex);

remainder section
} while (1);

Silberschatz, Galvin and  Gagne 20027.28Operating System Concepts

Semaphore Implementation

� Define a semaphore as a record

typedef struct {
int value;
struct process *L;

} semaphore;

� Assume two simple operations:
� block suspends the process that invokes it.

� wakeup(P) resumes the execution of a blocked process P.



Silberschatz, Galvin and  Gagne 20027.29Operating System Concepts

Implementation

� Semaphore operations now defined as 
wait(S):

S.value--;
if (S.value < 0) { 

add this process to S.L;
block;

}

signal(S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Silberschatz, Galvin and  Gagne 20027.30Operating System Concepts

Implementation

� Semaphore operations now defined as 
wait(S):

S.value--;
if (S.value < 0) { 

add this process to S.L;
block;

}

signal(S): 
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

EECS 211 NOTE:
The implementation shown 

here is different from the one 
in the Nachos system. Here, 
negative values are allowed.



Silberschatz, Galvin and  Gagne 20027.31Operating System Concepts

Semaphore as a General Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0

� Code:

Pi Pj

� �

A wait(flag)

signal(flag) B

Silberschatz, Galvin and  Gagne 20027.32Operating System Concepts

Semaphore as a General Synchronization Tool

� Execute B in Pj only after A executed in Pi

� Use semaphore flag initialized to 0

� Code:

Pi Pj

� �

A wait(flag)

signal(flag) B

EECS 211 NOTE:
This feature only works if the value 
in the semaphore can be negative.
In Nachos, condition variables need 
to be used for this synchronization.



Silberschatz, Galvin and  Gagne 20027.33Operating System Concepts

Deadlock and Starvation

� Deadlock – two or more processes are waiting indefinitely for 
an event that can be caused by only one of the waiting 
processes.

� Let S and Q be two semaphores initialized to 1
P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

� �

signal(S); signal(Q);
signal(Q) signal(S);

� Starvation – indefinite blocking.  A process may never be 
removed from the semaphore queue in which it is suspended.

Silberschatz, Galvin and  Gagne 20027.34Operating System Concepts

Two Types of Semaphores

� Counting semaphore – integer value can range over 
an unrestricted domain.

� Binary semaphore – integer value can range only 
between 0 and 1; can be simpler to implement.

� Can implement a counting semaphore S as a binary 
semaphore.



Silberschatz, Galvin and  Gagne 20027.35Operating System Concepts

Classical Problems of Synchronization

� Bounded-Buffer Problem

� Readers and Writers Problem

� Dining-Philosophers Problem

Silberschatz, Galvin and  Gagne 20027.36Operating System Concepts

Bounded-Buffer Problem

� Shared data

semaphore full, empty, mutex;

Initially:

full = 0, empty = n, mutex = 1



Silberschatz, Galvin and  Gagne 20027.37Operating System Concepts

Bounded-Buffer Problem Producer Process

do { 
…

produce an item in nextp
…

wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(full);

} while (1);

Silberschatz, Galvin and  Gagne 20027.38Operating System Concepts

Bounded-Buffer Problem Consumer Process

do { 
wait(full)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);



Silberschatz, Galvin and  Gagne 20027.39Operating System Concepts

Dining-Philosophers Problem

� Shared data 

semaphore chopstick[5];
Initially all values are 1

Silberschatz, Galvin and  Gagne 20027.40Operating System Concepts

Dining-Philosophers Problem 

� Philosopher i:
do {

wait(chopstick[i])
wait(chopstick[(i+1) % 5])

…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);

…
think
…

} while (1);



Silberschatz, Galvin and  Gagne 20028.41Operating System Concepts

Chapter 8:  Deadlocks

� System Model

� Deadlock Characterization

� Methods for Handling Deadlocks
� Deadlock Prevention

� Deadlock Avoidance

� Deadlock Detection 

� Recovery from Deadlock 

� Combined Approach to Deadlock Handling

Silberschatz, Galvin and  Gagne 20028.42Operating System Concepts

The Deadlock Problem

� A set of blocked processes each holding a resource and 
waiting to acquire a resource held by another process in 
the set.

� Example 
� System has 2 tape drives.

� P1 and P2 each hold one tape drive and each needs another 
one.

� Example 
� semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)
wait (B); wait(A)



Silberschatz, Galvin and  Gagne 20028.43Operating System Concepts

Bridge Crossing Example

� Traffic only in one direction.

� Each section of a bridge can be viewed as a resource.

� If a deadlock occurs, it can be resolved if one car backs 
up (preempt resources and rollback).

� Several cars may have to be backed up if a deadlock 
occurs.

� Starvation is possible.

Silberschatz, Galvin and  Gagne 20028.44Operating System Concepts

System Model

� Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

� Each resource type Ri has Wi instances.

� Each process utilizes a resource as follows:
� request 

� use 
� release



Silberschatz, Galvin and  Gagne 20028.45Operating System Concepts

Deadlock Characterization

� Mutual exclusion: only one process at a time can use a 
resource.

� Hold and wait: a process holding at least one resource 
is waiting to acquire additional resources held by other 
processes.

� No preemption: a resource can be released only 
voluntarily by the process holding it, after that process 
has completed its task.

� Circular wait: there exists a set {P0, P1, …, P0} of waiting 
processes such that P0 is waiting for a resource that is 
held by P1, P1 is waiting for a resource that is held by 
P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

Silberschatz, Galvin and  Gagne 20028.46Operating System Concepts

Resource-Allocation Graph

� V is partitioned into two types:
� P = {P1, P2, …, Pn}, the set consisting of all the processes in 

the system.

� R = {R1, R2, …, Rm}, the set consisting of all resource types 
in the system.

� request edge – directed edge P1 → Rj

� assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.



Silberschatz, Galvin and  Gagne 20028.47Operating System Concepts

Resource-Allocation Graph (Cont.)

� Process

� Resource Type with 4 instances

� Pi requests instance of Rj

� Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Silberschatz, Galvin and  Gagne 20028.48Operating System Concepts

Example of a Resource Allocation Graph



Silberschatz, Galvin and  Gagne 20028.49Operating System Concepts

Resource Allocation Graph With A Deadlock

Silberschatz, Galvin and  Gagne 20028.50Operating System Concepts

Resource Allocation Graph With A Cycle But No Deadlock



Silberschatz, Galvin and  Gagne 20028.51Operating System Concepts

Basic Facts

� If graph contains no cycles � no deadlock.

� If graph contains a cycle �
� if only one instance per resource type, then deadlock.

� if several instances per resource type, possibility of 
deadlock.

Silberschatz, Galvin and  Gagne 20028.52Operating System Concepts

Methods for Handling Deadlocks

� Ensure that the system will never enter a deadlock state.

� Allow the system to enter a deadlock state and then 
recover.

� Ignore the problem and pretend that deadlocks never 
occur in the system; used by most operating systems, 
including UNIX.



Silberschatz, Galvin and  Gagne 20028.53Operating System Concepts

Deadlock Prevention

� Mutual Exclusion – not required for sharable resources; 
must hold for nonsharable resources.

� Hold and Wait – must guarantee that whenever a 
process requests a resource, it does not hold any other 
resources.
� Require process to request and be allocated all its 

resources before it begins execution, or allow process to 
request resources only when the process has none.

� Low resource utilization; starvation possible.

Restrain the ways request can be made.

Silberschatz, Galvin and  Gagne 20028.54Operating System Concepts

Deadlock Prevention (Cont.)

� No Preemption –
� If a process that is holding some resources requests 

another resource that cannot be immediately allocated to it, 
then all resources currently being held are released.

� Preempted resources are added to the list of resources for 
which the process is waiting.

� Process will be restarted only when it can regain its old 
resources, as well as the new ones that it is requesting.

� Circular Wait – impose a total ordering of all resource 
types, and require that each process requests resources 
in an increasing order of enumeration.



Silberschatz, Galvin and  Gagne 20028.55Operating System Concepts

Deadlock Avoidance

� Simplest and most useful model requires that each 
process declare the maximum number of resources of 
each type that it may need.

� The deadlock-avoidance algorithm dynamically examines 
the resource-allocation state to ensure that there can 
never be a circular-wait condition.

� Resource-allocation state is defined by the number of 
available and allocated resources, and the maximum 
demands of the processes.

Requires that the system has some additional a priori information 
available.

Silberschatz, Galvin and  Gagne 20028.56Operating System Concepts

Deadlock Detection

� Allow system to enter deadlock state 

� Detection algorithm

� Recovery scheme



Silberschatz, Galvin and  Gagne 20028.57Operating System Concepts

Recovery from Deadlock:  Process Termination

� Abort all deadlocked processes.

� Abort one process at a time until the deadlock cycle is 
eliminated.

� In which order should we choose to abort?
� Priority of the process.
� How long process has computed, and how much longer to 

completion.
� Resources the process has used.
� Resources process needs to complete.
� How many processes will need to be terminated. 
� Is process interactive or batch?

Silberschatz, Galvin and  Gagne 20028.58Operating System Concepts

Recovery from Deadlock: Resource Preemption

� Selecting a victim – minimize cost.

� Rollback – return to some safe state, restart process for 
that state.

� Starvation – same process may always be picked as 
victim, include number of rollback in cost factor.


