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Page Replacement

� Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

� Use modify (dirty) bit to reduce overhead of page 
transfers – only modified pages are written to disk.

� Page replacement completes separation between logical 
memory and physical memory – large virtual memory can 
be provided on a smaller physical memory.
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Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement 
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame. 
Update the page and frame tables.

4. Restart the process.
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Page Replacement
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Page Replacement Algorithms

� Want lowest page-fault rate.
� Evaluate algorithm by running it on a particular string of 

memory references (reference string) and computing the 
number of page faults on that string.

� In all our examples, the reference string is 

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� 3 frames (3 pages can be in memory at a time per 
process)

� 4 frames

� FIFO Replacement – Belady’s Anomaly
� more frames � less page faults
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FIFO Illustrating Belady’s Anamoly
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Optimal Algorithm

� Replace page that will not be used for longest period of 
time.

� 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� How do you know this?

� Used for measuring how well your algorithm performs.
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Least Recently Used (LRU) Algorithm

� Reference string:  1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� Counter implementation
� Every page entry has a counter; every time page is 

referenced through this entry, copy the clock into the 
counter.

� When a page needs to be changed, look at the counters to 
determine which are to change.
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LRU Algorithm (Cont.)

� Stack implementation – keep a stack of page numbers in 
a double link form:
� Page referenced:

� move it to the top

� requires 6 pointers to be changed
� No search for replacement
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LRU Approximation Algorithms

� Reference bit
� With each page associate a bit, initially = 0

� When page is referenced bit set to 1.
� Replace the one which is 0 (if one exists).  We do not know 

the order, however.

� Second chance
� Need reference bit.

� Clock replacement.
� If page to be replaced (in clock order) has reference bit = 1.  

then:
� set reference bit 0.

� leave page in memory.
� replace next page (in clock order), subject to same 

rules.
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Second-Chance (clock) Page-Replacement Algorithm
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Counting Algorithms

� Keep a counter of the number of references that have 
been made to each page.

� LFU Algorithm:  replaces page with smallest count.

� MFU Algorithm: based on the argument that the page 
with the smallest count was probably just brought in and 
has yet to be used.
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Allocation of Frames

� Each process needs minimum number of pages.
� Example:  IBM 370 – 6 pages to handle SS MOVE 

instruction:
� instruction is 6 bytes, might span 2 pages.

� 2 pages to handle from.
� 2 pages to handle to.

� Two major allocation schemes.
� fixed allocation
� priority allocation
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Fixed Allocation

� Equal allocation – e.g., if 100 frames and 5 processes, 
give each 20 pages.

� Proportional allocation – Allocate according to the size of 
process.
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Priority Allocation

� Use a proportional allocation scheme using priorities 
rather than size.

� If process Pi generates a page fault,
� select for replacement one of its frames.
� select for replacement a frame from a process with lower 

priority number.
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Global vs. Local Allocation

� Global replacement – process selects a replacement 
frame from the set of all frames; one process can take a 
frame from another.

� Local replacement – each process selects from only its 
own set of allocated frames.
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Thrashing

� If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:
� low CPU utilization.
� operating system thinks that it needs to increase the degree 

of multiprogramming.

� another process added to the system.

� Thrashing ≡ a process is busy swapping pages in and 
out.
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Thrashing 

� Why does paging work?
Locality model
� Process migrates from one locality to another.
� Localities may overlap.

� Why does thrashing occur?
Σ size of locality > total memory size
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Locality In A Memory-Reference Pattern
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Working-Set Model

� ∆ ≡ working-set window ≡ a fixed number of page 
references 
Example:  10,000 instruction

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆
(varies in time)
� if ∆ too small will not encompass entire locality.
� if ∆ too large will encompass several localities.
� if ∆ = ∞ � will encompass entire program.

� D = Σ WSSi ≡ total demand frames 

� if D > m � Thrashing
� Policy if D > m, then suspend one of the processes.
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Working-set model
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Keeping Track of the Working Set

� Approximate with interval timer + a reference bit

� Example: ∆ = 10,000
� Timer interrupts after every 5000 time units.
� Keep in memory 2 bits for each page.
� Whenever a timer interrupts copy and sets the values of all 

reference bits to 0.

� If one of the bits in memory = 1 � page in working set.

� Why is this not completely accurate?
� Improvement = 10 bits and interrupt every 1000 time 

units.
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Page-Fault Frequency Scheme

� Establish “acceptable” page-fault rate.
� If actual rate too low, process loses frame.

� If actual rate too high, process gains frame.



13

Silberschatz, Galvin and  Gagne 200210.25Operating System Concepts

Other Considerations

� Prepaging

� Page size selection
� fragmentation
� table size 
� I/O overhead

� locality
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Other Considerations (Cont.)

� TLB Reach - The amount of memory accessible from the 
TLB.

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the 
TLB. Otherwise there is a high degree of page faults.
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Increasing the Size of the TLB

� Increase the Page Size. This may lead to an increase in 
fragmentation as not all applications require a large page 
size.

� Provide Multiple Page Sizes. This allows applications 
that require larger page sizes the opportunity to use them 
without an increase in fragmentation.
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Other Considerations (Cont.)

� Program structure
� int A[][] = new int[1024][1024];
� Each row is stored in one page 

� Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults 

� Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults
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Other Considerations (Cont.)

� I/O Interlock – Pages must sometimes be locked into 
memory.

� Consider I/O. Pages that are used for copying a file from 
a device must be locked from being selected for eviction 
by a page replacement algorithm.


