
1

Silberschatz, Galvin and Gagne 200210.1Operating System Concepts

Page Replacement

� Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

� Use modify (dirty) bit to reduce overhead of page
transfers – only modified pages are written to disk.

� Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory.

Silberschatz, Galvin and Gagne 200210.2Operating System Concepts

Basic Page Replacement

1. Find the location of the desired page on disk.

2. Find a free frame:
- If there is a free frame, use it.
- If there is no free frame, use a page replacement
algorithm to select a victim frame.

3. Read the desired page into the (newly) free frame.
Update the page and frame tables.

4. Restart the process.

2

Silberschatz, Galvin and Gagne 200210.3Operating System Concepts

Page Replacement

Silberschatz, Galvin and Gagne 200210.4Operating System Concepts

Page Replacement Algorithms

� Want lowest page-fault rate.
� Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the
number of page faults on that string.

� In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

3

Silberschatz, Galvin and Gagne 200210.5Operating System Concepts

Graph of Page Faults Versus The Number of Frames

Silberschatz, Galvin and Gagne 200210.6Operating System Concepts

First-In-First-Out (FIFO) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� 3 frames (3 pages can be in memory at a time per
process)

� 4 frames

� FIFO Replacement – Belady’s Anomaly
� more frames � less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

4

Silberschatz, Galvin and Gagne 200210.7Operating System Concepts

FIFO Illustrating Belady’s Anamoly

Silberschatz, Galvin and Gagne 200210.8Operating System Concepts

Optimal Algorithm

� Replace page that will not be used for longest period of
time.

� 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� How do you know this?

� Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

5

Silberschatz, Galvin and Gagne 200210.9Operating System Concepts

Least Recently Used (LRU) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� Counter implementation
� Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the
counter.

� When a page needs to be changed, look at the counters to
determine which are to change.

1

2

3

5

4

4 3

5

Silberschatz, Galvin and Gagne 200210.10Operating System Concepts

LRU Algorithm (Cont.)

� Stack implementation – keep a stack of page numbers in
a double link form:
� Page referenced:

� move it to the top

� requires 6 pointers to be changed
� No search for replacement

6

Silberschatz, Galvin and Gagne 200210.11Operating System Concepts

LRU Approximation Algorithms

� Reference bit
� With each page associate a bit, initially = 0

� When page is referenced bit set to 1.
� Replace the one which is 0 (if one exists). We do not know

the order, however.

� Second chance
� Need reference bit.

� Clock replacement.
� If page to be replaced (in clock order) has reference bit = 1.

then:
� set reference bit 0.

� leave page in memory.
� replace next page (in clock order), subject to same

rules.

Silberschatz, Galvin and Gagne 200210.12Operating System Concepts

Second-Chance (clock) Page-Replacement Algorithm

7

Silberschatz, Galvin and Gagne 200210.13Operating System Concepts

Counting Algorithms

� Keep a counter of the number of references that have
been made to each page.

� LFU Algorithm: replaces page with smallest count.

� MFU Algorithm: based on the argument that the page
with the smallest count was probably just brought in and
has yet to be used.

Silberschatz, Galvin and Gagne 200210.14Operating System Concepts

Allocation of Frames

� Each process needs minimum number of pages.
� Example: IBM 370 – 6 pages to handle SS MOVE

instruction:
� instruction is 6 bytes, might span 2 pages.

� 2 pages to handle from.
� 2 pages to handle to.

� Two major allocation schemes.
� fixed allocation
� priority allocation

8

Silberschatz, Galvin and Gagne 200210.15Operating System Concepts

Fixed Allocation

� Equal allocation – e.g., if 100 frames and 5 processes,
give each 20 pages.

� Proportional allocation – Allocate according to the size of
process.

m
S
s

pa

m

sS

ps

i
ii

i

ii

×==

=
�=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

≈×=

≈×=

=
=
=

a

a

s

s

m

i

Silberschatz, Galvin and Gagne 200210.16Operating System Concepts

Priority Allocation

� Use a proportional allocation scheme using priorities
rather than size.

� If process Pi generates a page fault,
� select for replacement one of its frames.
� select for replacement a frame from a process with lower

priority number.

9

Silberschatz, Galvin and Gagne 200210.17Operating System Concepts

Global vs. Local Allocation

� Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another.

� Local replacement – each process selects from only its
own set of allocated frames.

Silberschatz, Galvin and Gagne 200210.18Operating System Concepts

Thrashing

� If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
� low CPU utilization.
� operating system thinks that it needs to increase the degree

of multiprogramming.

� another process added to the system.

� Thrashing ≡ a process is busy swapping pages in and
out.

10

Silberschatz, Galvin and Gagne 200210.19Operating System Concepts

Thrashing

� Why does paging work?
Locality model
� Process migrates from one locality to another.
� Localities may overlap.

� Why does thrashing occur?
Σ size of locality > total memory size

Silberschatz, Galvin and Gagne 200210.20Operating System Concepts

Locality In A Memory-Reference Pattern

11

Silberschatz, Galvin and Gagne 200210.21Operating System Concepts

Working-Set Model

� ∆ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆
(varies in time)
� if ∆ too small will not encompass entire locality.
� if ∆ too large will encompass several localities.
� if ∆ = ∞ � will encompass entire program.

� D = Σ WSSi ≡ total demand frames

� if D > m � Thrashing
� Policy if D > m, then suspend one of the processes.

Silberschatz, Galvin and Gagne 200210.22Operating System Concepts

Working-set model

12

Silberschatz, Galvin and Gagne 200210.23Operating System Concepts

Keeping Track of the Working Set

� Approximate with interval timer + a reference bit

� Example: ∆ = 10,000
� Timer interrupts after every 5000 time units.
� Keep in memory 2 bits for each page.
� Whenever a timer interrupts copy and sets the values of all

reference bits to 0.

� If one of the bits in memory = 1 � page in working set.

� Why is this not completely accurate?
� Improvement = 10 bits and interrupt every 1000 time

units.

Silberschatz, Galvin and Gagne 200210.24Operating System Concepts

Page-Fault Frequency Scheme

� Establish “acceptable” page-fault rate.
� If actual rate too low, process loses frame.

� If actual rate too high, process gains frame.

13

Silberschatz, Galvin and Gagne 200210.25Operating System Concepts

Other Considerations

� Prepaging

� Page size selection
� fragmentation
� table size
� I/O overhead

� locality

Silberschatz, Galvin and Gagne 200210.26Operating System Concepts

Other Considerations (Cont.)

� TLB Reach - The amount of memory accessible from the
TLB.

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the
TLB. Otherwise there is a high degree of page faults.

14

Silberschatz, Galvin and Gagne 200210.27Operating System Concepts

Increasing the Size of the TLB

� Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page
size.

� Provide Multiple Page Sizes. This allows applications
that require larger page sizes the opportunity to use them
without an increase in fragmentation.

Silberschatz, Galvin and Gagne 200210.28Operating System Concepts

Other Considerations (Cont.)

� Program structure
� int A[][] = new int[1024][1024];
� Each row is stored in one page

� Program 1 for (j = 0; j < A.length; j++)
for (i = 0; i < A.length; i++)

A[i,j] = 0;
1024 x 1024 page faults

� Program 2 for (i = 0; i < A.length; i++)
for (j = 0; j < A.length; j++)

A[i,j] = 0;

1024 page faults

15

Silberschatz, Galvin and Gagne 200210.29Operating System Concepts

Other Considerations (Cont.)

� I/O Interlock – Pages must sometimes be locked into
memory.

� Consider I/O. Pages that are used for copying a file from
a device must be locked from being selected for eviction
by a page replacement algorithm.

