
EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 1

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 19

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 2

Lecture 19: Overview

• Data Structures
– Structures

• Declaration and definition

• Instantiation and initialization
• Member access

– Unions
• Declaration and definition

• Member access

– Enumerators
• Declaration and definition

– Type definitions

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 3

Data Structures

• Structures (aka. records): st r uct
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of members
• Names and types of members are fixed at structure definition

– Member access by name
• Member-access operator: structure_name. member_name

• Example:

st r uct S { i nt i ; f l oat f ; } s1, s2;

s1. i = 42; / * access t o member s * /
s1. f = 3. 1415;
s2 = s1; / * assi gnment * /
s1. i = s1. i + 2* s2. i ;

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 4

Data Structures

• Structure Declaration
– Declaration of a user-defined data type

• Structure Definition
– Definition of structure members and their type

• Structure Instantiation and Initialization
– Definition of a variable of structure type
– Initializer list defines initial values of members

• Example:
st r uct St udent ; / * decl ar at i on * /

st r uct St udent / * def i ni t i on * /
{ i nt I D; / * member s * /

char Name[40] ;
char Gr ade;

} ;

st r uct St udent Jane = / * i nst ant i at i on * /
{ 1001, “ Jane Doe” , ‘ A’ } ; / * i ni t i al i zat i on * /

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 5

Data Structures

• Structure Access
– Members are accessed by their name
– Member-access operator .

• Example:
st r uct St udent
{ i nt I D;

char Name[40] ;
char Gr ade;

} ;

st r uct St udent Jane =
{ 1001, “ Jane Doe” , ‘ A’ } ;

voi d Pr i nt St udent (st r uct St udent s)
{

pr i nt f (“ I D: %d\ n” , s. I D) ;
pr i nt f (“ Name: %s\ n” , s. Name) ;
pr i nt f (“ Gr ade: %c\ n” , s. Gr ade) ;

}

1001
“ Jane Doe”

‘ A’

Jane

I D

Name

Gr ade

I D: 1001
Name: Jane Doe
Gr ade: A

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 6

Data Structures

• Unions: uni on
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of mutually exclusive members
• Names and types of members are fixed at union definition

– Member access by name
• Member-access operator: union_name. member_name

– Only one member may be used at a time!
• All members share the same location in memory!

• Example:

uni on U { i nt i ; f l oat f ; } u1, u2;

u1. i = 42; / * access t o member s * /
u2. f = 3. 1415;
u1. f = u2. f ; / * dest r oys u1. i ! * /

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 7

Data Structures

• Union Declaration
– Declaration of a user-defined data type

• Union Definition
– Definition of union members and their type

• Union Instantiation and Initialization
– Definition of a variable of union type
– Single initializer defines value of first member

• Example:
uni on Hei ght Of Tr i angl e; / * decl ar at i on * /

uni on Hei ght Of Tr i angl e / * def i ni t i on * /
{ i nt Hei ght ; / * member s * /

i nt Lengt hOf Si deA;
f l oat Angl eBet a;

} ;

uni on Hei ght Of Tr i angl e H / * i nst ant i at i on * /
= { 42 } ; / * i ni t i al i zat i on * /

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 8

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
uni on Hei ght Of Tr i angl e
{ i nt Hei ght ;

i nt Si deA;
f l oat Bet a;

} ;

uni on Hei ght Of Tr i angl e t 1, t 2, t 3
= { 42 } ;

0

t 2
Hei ght /
Si deA/

Bet a

0

t 1
Hei ght /
Si deA/

Bet a

42

t 3
Hei ght /
Si deA/

Bet a

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 9

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
uni on Hei ght Of Tr i angl e
{ i nt Hei ght ;

i nt Si deA;
f l oat Bet a;

} ;

uni on Hei ght Of Tr i angl e t 1, t 2, t 3
= { 42 } ;

voi d Set Hei ght (voi d)
{

t 1. Hei ght = 10;
t 2. Si deA = t 1. Hei ght / 2;
t 3. Bet a = 90. 0;

}

5

t 2
Hei ght /
Si deA/

Bet a

10

t 1
Hei ght /
Si deA/

Bet a

90. 0

t 3
Hei ght /
Si deA/

Bet a

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 10

Data Structures

• Enumerators: enum
– User-defined data type

• Members are an enumeration of integral constants

– Fixed set of members
• Names and values of members are fixed at enumerator definition

– Members are constants
• Member values cannot be changed after definition

• Example:
enum E { r ed, yel l ow, gr een } ;
enum E Li ght NS, Li ght EW;

Li ght EW = gr een; / * assi gnment * /
i f (Li ght NS == gr een) / * compar i son * /

{ Li ght EW = r ed; }

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 11

Data Structures

• Enumerator Declaration
– Declaration of a user-defined data type

• Enumerator Definition
– Definition of enumerator members and their value

• Enumerator Instantiation and Initialization
– Definition of a variable of enumerator type
– Initializer should be one member of the enumerator

• Example:
enum Weekday; / * decl ar at i on * /

enum Weekday / * def i ni t i on * /
{ Monday, Tuesday, / * member s * /

Wednesday, Thur sday,
Fr i day, Sat ur day, Sunday;

} ;

enum Weekday Today / * i nst ant i at i on * /
= Wednesday; / * i ni t i al i zat i on * /

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 12

Data Structures

• Enumerator Values
– Enumerator values are

integer constants
– By default, enumerator values

start at 0 and are incremented
by 1 for each following member

–

• Example:

enum Weekday
{ Monday,

Tuesday,
Wednesday,
Thur sday,
Fr i day,
Sat ur day,
Sunday;

} ;

enum Weekday Today
= Wednesday;

voi d Pr i nt Weekday(
enum Weekday d)

{
pr i nt f (“ Day: %d\ n” , d) ;

}

Wednesday

Today

Day: 2

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 13

Data Structures

• Enumerator Values
– Enumerator values are

integer constants
– By default, enumerator values

start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 1,

Tuesday,
Wednesday,
Thur sday,
Fr i day,
Sat ur day,
Sunday;

} ;

enum Weekday Today
= Wednesday;

voi d Pr i nt Weekday(
enum Weekday d)

{
pr i nt f (“ Day: %d\ n” , d) ;

}

Wednesday

Today

Day: 3

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 14

Data Structures

• Enumerator Values
– Enumerator values are

integer constants
– By default, enumerator values

start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 2,

Tuesday,
Wednesday,
Thur sday,
Fr i day,
Sat ur day,
Sunday = 1;

} ;

enum Weekday Today
= Wednesday;

voi d Pr i nt Weekday(
enum Weekday d)

{
pr i nt f (“ Day: %d\ n” , d) ;

}

Wednesday

Today

Day: 4

EECS10: Computational Methods in ECE Lecture 19

(c) 2006 R. Doemer 8

EECS10: Computational Methods in ECE, Lecture 19 (c) 2006 R. Doemer 15

Data Structures

• Type definitions: t ypedef
– A typedef can be defined as an alias type for another type
– A typedef definition follows the same rules as a variable

definition

– Type definitions are usually used to abbreviate access to
user-defined types

• Examples:
t ypedef l ong MyI nt eger ;

t ypedef enum Weekday Day;
Day Today;

t ypedef st r uct St udent Schol ar ;
Schol ar Jane, John;

