
EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 1

EECS 221:
System-on-Chip Software Synthesis

Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 2

Lecture 3: Overview

• System-on-Chip Design with SpecC
– SpecC Approach
– Design Methodology
– System Design Flow
– System-on-Chip Environment (SCE)

• Demo

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 2

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 3

SpecC Approach

• SpecC model
– Hierarchical network of behaviors and channels
– Separation of communication and computation

• SpecC language
– True superset of ANSI-C

• ANSI-C plus extensions for HW-design

– Support of all concepts needed in system design
• Structural and behavioral hierarchy
• Concurrency
• State transitions
• Communication
• Synchronization
• Exception handling
• Timing
• RTL

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 4

Design Methodology

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 3

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 5

System Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 6

System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks
• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE
• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication in channels

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 4

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 7

System Design Flow

• Step 2: Scheduling Refinement
– For each PE, serialize the execution of behaviors

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. Round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

– Result:
System model with abstract RTOS scheduler
inserted in each PE

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 8

System Design Flow

• Step 3: Communication Refinement
– Allocation of system busses

• Type and number of system busses

• Type of bus protocol for each bus (if applicable)
• Number of transducers (if applicable)

• System connectivity

– Mapping of channels to busses
• Map each communication channel to a system bus

(or multiple busses, if applicable)

– Result:
Bus-functional model of the system

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 5

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 9

System Design Flow

• Step 4: Hardware Refinement (for HW PE)
– Allocation of RTL components

• Type and number of functional units
• Type and number of storage units
• Type and number of interconnecting busses

– Scheduling
• Basic blocks assigned to super-states
• Operations assigned to clock cycles

– Binding
• Bind functional operations to functional units
• Bind variables to storage units
• Bind transfers to busses

– Result:
Clock-cycle accurate model of each HW PE

– Output: Synthesizable Verilog description

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 10

System Design Flow

• Step 5: Software Refinement (for SW PE)
– C code generation

• For selected target processor

• For selected target RTOS

– Compilation to Instruction Set
• for Instruction Set Simulation (ISS)

– Assembly
– Result:

Clock-cycle accurate model of each SW PE
– Output: downloadable object code

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 6

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 11

System-on-Chip Environment (SCE)

Copyright © 2003 CECS

Specification
model

Architecture modelEstimation

Profiling

Profiling data

Communication model

Profiling
weights

Arch. refinement

Comm. refinement

Estimation results

Estimation

Estimation results

Cycle-a. refinement

Implementation model

Capture

Validation

Protocol
models

Comp. / IP
models

Profile

Estimate

Estimate

Refinement

Allocation

Beh. partitioning

Scheduling / RTOS

Protocol selection

Channel partitioning

Spec. optimization

Cycle scheduling

Protocol scheduling

Browsing

Arbitration

SW assembly

Alg. selection

Simulate

Compile

Simulate

Simulate

Simulate

Simulate

Design decisions

RTL
comp.

HW/SW synthesis
Synthesize

Comp. / IP
attributes

Protocol
attributes

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 12

System-on-Chip Environment (SCE)

• SCE Components:
– Graphical frontend (sce, scchart)

– Editor (sced)

– Compiler and simulator (scc)
– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)
– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities ...

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 7

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 13

SCE Main Window

Copyright © 2003 CECS

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 14

SCE Source Editor

Copyright © 2003 CECS

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 8

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 15

SCE Hierarchy Displays

Copyright © 2003 CECS

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 16

SCE Compiler and Simulator

Copyright © 2003 CECS

EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 9

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 17

SCE Profiling and Analysis

Copyright © 2003 CECS

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 18

Application Example

• Design example: GSM Vocoder
– Enhanced full-rate voice codec
• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s
• Encoded bit stream @ 12.2 kbit/s
• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
• 73 leaf behaviors
• 9139 formatted lines of SpecC code

(~13000 lines of original C code, including comments)

