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Lecture 3: Overview

• System-on-Chip Design with SpecC
– SpecC Approach
– Design Methodology
– System Design Flow
– System-on-Chip Environment (SCE)

• Demo
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SpecC Approach

• SpecC model
– Hierarchical network of behaviors and channels
– Separation of communication and computation

• SpecC language
– True superset of ANSI-C

• ANSI-C plus extensions for HW-design

– Support of all concepts needed in system design
• Structural and behavioral hierarchy
• Concurrency
• State transitions
• Communication
• Synchronization
• Exception handling
• Timing
• RTL
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Design Methodology
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System Design Flow
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System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks
• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE
• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication in channels
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System Design Flow

• Step 2: Scheduling Refinement
– For each PE, serialize the execution of behaviors 

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. Round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

– Result:
System model with abstract RTOS scheduler 
inserted in each PE
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System Design Flow

• Step 3: Communication Refinement
– Allocation of system busses

• Type and number of system busses

• Type of bus protocol for each bus (if applicable)
• Number of transducers (if applicable)

• System connectivity

– Mapping of channels to busses
• Map each communication channel to a system bus

(or multiple busses, if applicable)

– Result:
Bus-functional model of the system
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System Design Flow

• Step 4: Hardware Refinement (for HW PE)
– Allocation of RTL components

• Type and number of functional units
• Type and number of storage units
• Type and number of interconnecting busses

– Scheduling
• Basic blocks assigned to super-states
• Operations assigned to clock cycles

– Binding
• Bind functional operations to functional units
• Bind variables to storage units
• Bind transfers to busses

– Result:
Clock-cycle accurate model of each HW PE

– Output: Synthesizable Verilog description
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System Design Flow

• Step 5: Software Refinement (for SW PE)
– C code generation

• For selected target processor

• For selected target RTOS

– Compilation to Instruction Set
• for Instruction Set Simulation (ISS)

– Assembly
– Result:

Clock-cycle accurate model of each SW PE
– Output: downloadable object code
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System-on-Chip Environment (SCE)

Copyright © 2003 CECS
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System-on-Chip Environment (SCE)

• SCE Components:
– Graphical frontend (sce, scchart)

– Editor (sced)

– Compiler and simulator (scc)
– Profiling and analysis (scprof)

– Architecture refinement (scar)

– RTOS refinement (scos)

– Communication refinement (sccr)

– RTL refinement (scrtl)
– Software refinement (sc2c)

– Scripting interface (scsh)

– Tools and utilities ...



EECS221: SoC Software Synthesis Lecture 3

(c) 2006 R. Doemer 7

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 13

SCE Main Window

Copyright © 2003 CECS

EECS221: SoC Software Synthesis, Lecture 3 (c) 2006 R. Doemer 14

SCE Source Editor

Copyright © 2003 CECS
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SCE Hierarchy Displays

Copyright © 2003 CECS
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SCE Compiler and Simulator

Copyright © 2003 CECS
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SCE Profiling and Analysis

Copyright © 2003 CECS
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Application Example

• Design example: GSM Vocoder
– Enhanced full-rate voice codec
• GSM standard for mobile telephony (GSM 06.10)

• Lossy voice encoding/decoding
• Incoming speech samples @ 104 kbit/s
• Encoded bit stream @ 12.2 kbit/s
• Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)

– Real-time constraint:
• max. 20ms per speech frame

(max. total of 3.26s for sample speech file)

– SpecC specification model
• 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
• 73 leaf behaviors
• 9139 formatted lines of SpecC code

(~13000 lines of original C code, including comments)


