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Reuse of standard software components

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

� Operating systems
� Middleware
� Real-time data bases
� Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

� Operating systems
� Middleware
� Real-time data bases
� Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).
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Worst/best  case execution times (1)

Def.: The worst case execution time (WCET) is an upper 
bound on the execution times of tasks.
The term is not ideal, since a program requiring the WCET for 
its execution does not have to exist (WCET is a bound).

Def.: The worst case execution time (WCET) is an upper 
bound on the execution times of tasks.
The term is not ideal, since a program requiring the WCET for 
its execution does not have to exist (WCET is a bound).

Def.: The best case execution time (BCET) is a lower
bound on the execution times of tasks.
The term is not ideal, since a program running at the BCET for 
its execution does not have to exist (BCET is a bound).

Def.: The best case execution time (BCET) is a lower
bound on the execution times of tasks.
The term is not ideal, since a program running at the BCET for 
its execution does not have to exist (BCET is a bound).
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Worst/best case execution times (2)
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Worst case execution times (2)

Complexity:
� in the general case: undecidable if a bound exists.
� for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches, 
interrupts, virtual memory, etc.

Complexity:
� in the general case: undecidable if a bound exists.
� for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches, 
interrupts, virtual memory, etc.

Approaches: 
� for hardware: requires detailed timing behavior 
� for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

Approaches: 
� for hardware: requires detailed timing behavior 
� for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)
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Average execution times

� Estimated cost and performance values:
Difficult to generate sufficiently precise 
estimates;
Balance between run-time and precision

� Estimated cost and performance values:
Difficult to generate sufficiently precise 
estimates;
Balance between run-time and precision

� Accurate cost and performance values:
Can be done with normal tools
(such as compilers).
As precise as the input data is.

� Accurate cost and performance values:
Can be done with normal tools
(such as compilers).
As precise as the input data is.

x
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Real-time scheduling (1)

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping 
V → T

of a set of tasks V to start times from domain T.

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping 
V → T

of a set of tasks V to start times from domain T.

V1 V2 V4V3

t

G=(V,E)

T

s
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Real-time scheduling (2)

Typically, schedules have to respect a number 
of constraints, incl. resource constraints, 
dependency constraints, deadlines.

Scheduling = finding such a mapping.

Scheduling to be performed several times 
during ES design (early rough scheduling as 
well as late precise scheduling).

Typically, schedules have to respect a number 
of constraints, incl. resource constraints, 
dependency constraints, deadlines.

Scheduling = finding such a mapping.

Scheduling to be performed several times 
during ES design (early rough scheduling as 
well as late precise scheduling).
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Classification of scheduling algorithms
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Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting 
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

Def.: A time-constraint (deadline) is called hard if not meeting 
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.
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Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of 
time are called periodic tasks. p is called their period. Each 
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times 
are called sporadic, if there is a minimum separation 
between the times at which they request the processor. 

Def.: Tasks which must be executed once every p units of 
time are called periodic tasks. p is called their period. Each 
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times 
are called sporadic, if there is a minimum separation 
between the times at which they request the processor. 
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Preemptive and non-preemptive scheduling

� Non-preemptive schedulers:

Tasks are executed until they are done.

Response time for external events may be quite long.
� Preemptive schedulers: To be used if 

- some tasks have long execution times or
- if the response time for external events to be short.

� Non-preemptive schedulers:

Tasks are executed until they are done.

Response time for external events may be quite long.
� Preemptive schedulers: To be used if 

- some tasks have long execution times or
- if the response time for external events to be short.
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Dynamic/online scheduling

� Dynamic/online scheduling:
Processor allocation decisions 
(scheduling) at run-time; based on the 
information about the tasks arrived so 
far.

� Dynamic/online scheduling:
Processor allocation decisions 
(scheduling) at run-time; based on the 
information about the tasks arrived so 
far.
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Static/offline scheduling

� Static/offline scheduling:
Scheduling taking a priori knowledge about arrival 
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by 
timer. Timer controlled by a table generated at 
design time.

� Static/offline scheduling:
Scheduling taking a priori knowledge about arrival 
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by 
timer. Timer controlled by a table generated at 
design time.
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Time-triggered systems (1)

In an entirely time-triggered system, the temporal control 
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all 
activities of the node. This schedule considers the required 
precedence and mutual exclusion relationships among the 
tasks such that an explicit coordination of the tasks by the 
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It 
looks at the TDL, and then performs the action that has been 
planned for this instant [Kopetz].

In an entirely time-triggered system, the temporal control 
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all 
activities of the node. This schedule considers the required 
precedence and mutual exclusion relationships among the 
tasks such that an explicit coordination of the tasks by the 
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It 
looks at the TDL, and then performs the action that has been 
planned for this instant [Kopetz].
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Time-triggered systems (2)

… pre-run-time scheduling is often the only practical 
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met. 
The disadvantage is that the response to sporadic events may 
be poor. 

… pre-run-time scheduling is often the only practical 
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met. 
The disadvantage is that the response to sporadic events may 
be poor. 
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Centralized and distributed scheduling

�Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several 
processors.

�Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor 

systems (includes HW accelerators as special case).

�Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several 
processors.

�Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor 

systems (includes HW accelerators as special case).
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necessary

Schedulability

Set of tasks is schedulable under a set of 
constraints, if a schedule exists for that set 
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for 
schedule checked. (Hopefully) small 
probability of indicating that no schedule 
exists even though one exists. 

Necessary tests: checking necessary 
conditions. Used to show no schedule 
exists. There may be cases in which no 
schedule exists & we cannot prove it.  

Set of tasks is schedulable under a set of 
constraints, if a schedule exists for that set 
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for 
schedule checked. (Hopefully) small 
probability of indicating that no schedule 
exists even though one exists. 

Necessary tests: checking necessary 
conditions. Used to show no schedule 
exists. There may be cases in which no 
schedule exists & we cannot prove it.  

schedulable
sufficient
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Cost functions

Cost function: Different algorithms aim at minimizing 
different functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

Cost function: Different algorithms aim at minimizing 
different functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2
Max. lateness
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Simple tasks

Tasks without any interprocess communication are called 
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

Tasks without any interprocess communication are called 
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

ready running
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Simple tasks

The API of a TT-OS supporting S-tasks is .. simple [Kopetz]:

It consists of  3 data structures & 2 OS calls. ... The calls are 
TERMINATE TASK & ERROR.

– The TERMINATE TASK system call is executed 
whenever the task has reached its termination point.

– In case of an error that cannot be handled within the 
application task, the task terminates its operation with the 
ERROR system call.

The API of a TT-OS supporting S-tasks is .. simple [Kopetz]:

It consists of  3 data structures & 2 OS calls. ... The calls are 
TERMINATE TASK & ERROR.

– The TERMINATE TASK system call is executed 
whenever the task has reached its termination point.

– In case of an error that cannot be handled within the 
application task, the task terminates its operation with the 
ERROR system call.

ready running
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Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

� �i be the laxity or slack, defined as �i = di - ci

• fi be the finishing time.

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

� �i be the laxity or slack, defined as �i = di - ci

• fi be the finishing time.

�i
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Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due 
date (deadline) first.

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due 
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

fifi fi
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Optimality of EDD

EDD is optimal, since it follows Jackson's rule:
Given a set of n independent tasks, any algorithm that 
executes the tasks in order of non-decreasing (absolute) 
deadlines is optimal with respect to minimizing the 
maximum lateness.

Proof (See Buttazzo, 2002):

Let σ be a schedule produced by any algorithm A

If A  ≠ EDD → ∃ Ta, Tb, da db, Tb immediately precedes 
Tb in σ.

Let σ' be the schedule obtained by exchanging Ta and Tb.

EDD is optimal, since it follows Jackson's rule:
Given a set of n independent tasks, any algorithm that 
executes the tasks in order of non-decreasing (absolute) 
deadlines is optimal with respect to minimizing the 
maximum lateness.

Proof (See Buttazzo, 2002):

Let σ be a schedule produced by any algorithm A

If A  ≠ EDD → ∃ Ta, Tb, da db, Tb immediately precedes 
Tb in σ.

Let σ' be the schedule obtained by exchanging Ta and Tb.

More
in-depth:
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Exchanging Ta and Tb cannot increase lateness

Max. lateness for Ta and Tb in σ is Lmax(a,b)=fa-da

Max. lateness for Ta and Tb in σ' is L'max(a,b)=max(L'a,L'b)

Two possible cases
1. L'a � L'b: → L'max(a,b) = f'a – da < fa – da = Lmax(a,b)

since Ta starts earlier in schedule σ'.
2. L'a L'b: → L'max(a,b) = f'b – db = fa – db � fa – da = 

Lmax(a,b) since fa=f'b and da db

� L'max(a,b) Lmax(a,b)

Tb

TbTa

σ
σ'

Ta

fa=f'b
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EDD is optimal

�Any schedule σ with lateness L can be transformed into 
an EDD schedule σn with lateness Ln L, which is the 
minimum lateness.

�EDD is optimal (q.e.d.)

�Any schedule σ with lateness L can be transformed into 
an EDD schedule σn with lateness Ln L, which is the 
minimum lateness.

�EDD is optimal (q.e.d.)

end
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Earliest Deadline First (EDF)
- Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with 
arbitrary arrival times, any algorithm that at any instant executes 
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum 
lateness.

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with 
arbitrary arrival times, any algorithm that at any instant executes 
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum 
lateness.
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Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their 

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the 

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2); 
(less with binary search or bucket arrays). 

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their 

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the 

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2); 
(less with binary search or bucket arrays). 

Sorted queue

Executing task
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Earliest Deadline First (EDF)
- Example -

Later deadline
� no preemption

Earlier deadline
� preemption
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Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.
Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.
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Properties

� Not sufficient to call scheduler & re-compute laxity just at 
task arrival times.

� Overhead for calls of the scheduler.
� Many context switches.
� Detects missed deadlines early.
� LL is also an optimal scheduling for mono-processor 

systems.
� Dynamic priorities � cannot be used with a fixed prio OS.
� LL scheduling requires the knowledge of the execution 

time.

� Not sufficient to call scheduler & re-compute laxity just at 
task arrival times.

� Overhead for calls of the scheduler.
� Many context switches.
� Detects missed deadlines early.
� LL is also an optimal scheduling for mono-processor 

systems.
� Dynamic priorities � cannot be used with a fixed prio OS.
� LL scheduling requires the knowledge of the execution 

time.
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Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor 
idle.

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor 
idle.
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Scheduling without preemption (2)

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.
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Scheduling without preemption

Preemption not allowed: � optimal schedules may leave 
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping 
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem 
becomes NP-hard in general. B&B typically used.

Preemption not allowed: � optimal schedules may leave 
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping 
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem 
becomes NP-hard in general. B&B typically used.
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Scheduling with precedence constraints

Task graph and possible schedule:Task graph and possible schedule:

Schedule can be stored in table.Schedule can be stored in table.
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Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and among the tasks 
with no successors inserts the one with the latest deadline into 
a queue. It then repeats this process, putting tasks whose 
successor have all been selected into the queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

LDF [Lawler, 1973]: reads the task graph and among the tasks 
with no successors inserts the one with the latest deadline into 
a queue. It then repeats this process, putting tasks whose 
successor have all been selected into the queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

If no local deadlines exist, LDF performs just a topological sort.If no local deadlines exist, LDF performs just a topological sort.
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Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of 
dependent tasks into a set of independent tasks with different 
timing parameters [Chetto90].
This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm 
developed by Stankovic and Ramamritham can be used.

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of 
dependent tasks into a set of independent tasks with different 
timing parameters [Chetto90].
This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm 
developed by Stankovic and Ramamritham can be used.
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Summary

Worst case execution times (WCET)
Definition of scheduling terms

Hard vs. soft deadlines
Static vs. dynamic �TT-OS
Schedulability

Scheduling approaches
– Aperiodic tasks

• No precedences
– Simultaneous (�EDD) 

& Asynchronous Arrival Times (�EDF, LL)
• Precedences

– Simultaneous (� LDF) & Asynchronous Arrival 
Times (� mEDF)

Worst case execution times (WCET)
Definition of scheduling terms

Hard vs. soft deadlines
Static vs. dynamic �TT-OS
Schedulability

Scheduling approaches
– Aperiodic tasks

• No precedences
– Simultaneous (�EDD) 

& Asynchronous Arrival Times (�EDF, LL)
• Precedences

– Simultaneous (� LDF) & Asynchronous Arrival 
Times (� mEDF)


