
1

- 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Simplified design flow
for embedded systems

2005/12/02

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Reuse of standard software components

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

� Operating systems
� Middleware
� Real-time data bases
� Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

� Operating systems
� Middleware
� Real-time data bases
� Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling
(requires knowledge about execution times).

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Worst/best case execution times (1)

Def.: The worst case execution time (WCET) is an upper
bound on the execution times of tasks.
The term is not ideal, since a program requiring the WCET for
its execution does not have to exist (WCET is a bound).

Def.: The worst case execution time (WCET) is an upper
bound on the execution times of tasks.
The term is not ideal, since a program requiring the WCET for
its execution does not have to exist (WCET is a bound).

Def.: The best case execution time (BCET) is a lower
bound on the execution times of tasks.
The term is not ideal, since a program running at the BCET for
its execution does not have to exist (BCET is a bound).

Def.: The best case execution time (BCET) is a lower
bound on the execution times of tasks.
The term is not ideal, since a program running at the BCET for
its execution does not have to exist (BCET is a bound).

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Worst/best case execution times (2)

W
CET

Actu
all

y p
os

sib
le

wor
st

ca
se

Obs
er

ve
d

ex
ec

ut
ion

 tim
e

Actu
all

y b
es

t p
os

sib
le

ex
. t

im
e

BCET'

W
CET’ (

tig
ht

er
 b

ou
nd

)

BCET

t

Feasible execution times

Other authors
W

CET

BCET

Esti
m

at
ed

 W
CET

Esti
m

at
ed

BCET

Feasible
execution

times

Obs
er

ve
d W

CET

D
ef

in
iti

on
 u

se
d

in
 th

is
 c

ou
rs

e

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Worst case execution times (2)

Complexity:
� in the general case: undecidable if a bound exists.
� for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches,
interrupts, virtual memory, etc.

Complexity:
� in the general case: undecidable if a bound exists.
� for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches,
interrupts, virtual memory, etc.

Approaches:
� for hardware: requires detailed timing behavior
� for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

Approaches:
� for hardware: requires detailed timing behavior
� for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Average execution times

� Estimated cost and performance values:
Difficult to generate sufficiently precise
estimates;
Balance between run-time and precision

� Estimated cost and performance values:
Difficult to generate sufficiently precise
estimates;
Balance between run-time and precision

� Accurate cost and performance values:
Can be done with normal tools
(such as compilers).
As precise as the input data is.

� Accurate cost and performance values:
Can be done with normal tools
(such as compilers).
As precise as the input data is.

x

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Real-time scheduling (1)

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping
V → T

of a set of tasks V to start times from domain T.

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping
V → T

of a set of tasks V to start times from domain T.

V1 V2 V4V3

t

G=(V,E)

T

s

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Real-time scheduling (2)

Typically, schedules have to respect a number
of constraints, incl. resource constraints,
dependency constraints, deadlines.

Scheduling = finding such a mapping.

Scheduling to be performed several times
during ES design (early rough scheduling as
well as late precise scheduling).

Typically, schedules have to respect a number
of constraints, incl. resource constraints,
dependency constraints, deadlines.

Scheduling = finding such a mapping.

Scheduling to be performed several times
during ES design (early rough scheduling as
well as late precise scheduling).

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Classification of scheduling algorithms

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Preemptive and non-preemptive scheduling

� Non-preemptive schedulers:

Tasks are executed until they are done.

Response time for external events may be quite long.
� Preemptive schedulers: To be used if

- some tasks have long execution times or
- if the response time for external events to be short.

� Non-preemptive schedulers:

Tasks are executed until they are done.

Response time for external events may be quite long.
� Preemptive schedulers: To be used if

- some tasks have long execution times or
- if the response time for external events to be short.

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Dynamic/online scheduling

� Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so
far.

� Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so
far.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Static/offline scheduling

� Static/offline scheduling:
Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at
design time.

� Static/offline scheduling:
Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at
design time.

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Time-triggered systems (1)

In an entirely time-triggered system, the temporal control
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required
precedence and mutual exclusion relationships among the
tasks such that an explicit coordination of the tasks by the
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been
planned for this instant [Kopetz].

In an entirely time-triggered system, the temporal control
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required
precedence and mutual exclusion relationships among the
tasks such that an explicit coordination of the tasks by the
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been
planned for this instant [Kopetz].

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Time-triggered systems (2)

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Centralized and distributed scheduling

�Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
processors.

�Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor

systems (includes HW accelerators as special case).

�Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
processors.

�Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor

systems (includes HW accelerators as special case).

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

necessary

Schedulability

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of indicating that no schedule
exists even though one exists.

Necessary tests: checking necessary
conditions. Used to show no schedule
exists. There may be cases in which no
schedule exists & we cannot prove it.

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of indicating that no schedule
exists even though one exists.

Necessary tests: checking necessary
conditions. Used to show no schedule
exists. There may be cases in which no
schedule exists & we cannot prove it.

schedulable
sufficient

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Cost functions

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2
Max. lateness

- 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Simple tasks

Tasks without any interprocess communication are called
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

Tasks without any interprocess communication are called
simple tasks (S-tasks).

S-tasks can be in one out of two states: ready or running.

ready running

11

- 21 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Simple tasks

The API of a TT-OS supporting S-tasks is .. simple [Kopetz]:

It consists of 3 data structures & 2 OS calls. ... The calls are
TERMINATE TASK & ERROR.

– The TERMINATE TASK system call is executed
whenever the task has reached its termination point.

– In case of an error that cannot be handled within the
application task, the task terminates its operation with the
ERROR system call.

The API of a TT-OS supporting S-tasks is .. simple [Kopetz]:

It consists of 3 data structures & 2 OS calls. ... The calls are
TERMINATE TASK & ERROR.

– The TERMINATE TASK system call is executed
whenever the task has reached its termination point.

– In case of an error that cannot be handled within the
application task, the task terminates its operation with the
ERROR system call.

ready running

- 22 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

� �i be the laxity or slack, defined as �i = di - ci

• fi be the finishing time.

Let {Ti } be a set of tasks. Let:
• ci be the execution time of Ti ,
• di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

� �i be the laxity or slack, defined as �i = di - ci

• fi be the finishing time.

�i

12

- 23 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

fifi fi

- 24 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Optimality of EDD

EDD is optimal, since it follows Jackson's rule:
Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the
maximum lateness.

Proof (See Buttazzo, 2002):

Let σ be a schedule produced by any algorithm A

If A ≠ EDD → ∃ Ta, Tb, da db, Tb immediately precedes
Tb in σ.

Let σ' be the schedule obtained by exchanging Ta and Tb.

EDD is optimal, since it follows Jackson's rule:
Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the
maximum lateness.

Proof (See Buttazzo, 2002):

Let σ be a schedule produced by any algorithm A

If A ≠ EDD → ∃ Ta, Tb, da db, Tb immediately precedes
Tb in σ.

Let σ' be the schedule obtained by exchanging Ta and Tb.

More
in-depth:

13

- 25 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Exchanging Ta and Tb cannot increase lateness

Max. lateness for Ta and Tb in σ is Lmax(a,b)=fa-da

Max. lateness for Ta and Tb in σ' is L'max(a,b)=max(L'a,L'b)

Two possible cases
1. L'a � L'b: → L'max(a,b) = f'a – da < fa – da = Lmax(a,b)

since Ta starts earlier in schedule σ'.
2. L'a L'b: → L'max(a,b) = f'b – db = fa – db � fa – da =

Lmax(a,b) since fa=f'b and da db

� L'max(a,b) Lmax(a,b)

Tb

TbTa

σ
σ'

Ta

fa=f'b

- 26 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

EDD is optimal

�Any schedule σ with lateness L can be transformed into
an EDD schedule σn with lateness Ln L, which is the
minimum lateness.

�EDD is optimal (q.e.d.)

�Any schedule σ with lateness L can be transformed into
an EDD schedule σn with lateness Ln L, which is the
minimum lateness.

�EDD is optimal (q.e.d.)

end

14

- 27 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

- 28 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2);
(less with binary search or bucket arrays).

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2);
(less with binary search or bucket arrays).

Sorted queue

Executing task

15

- 29 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Example -

Later deadline
� no preemption

Earlier deadline
� preemption

- 30 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.
Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.

16

- 31 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Properties

� Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

� Overhead for calls of the scheduler.
� Many context switches.
� Detects missed deadlines early.
� LL is also an optimal scheduling for mono-processor

systems.
� Dynamic priorities � cannot be used with a fixed prio OS.
� LL scheduling requires the knowledge of the execution

time.

� Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

� Overhead for calls of the scheduler.
� Many context switches.
� Detects missed deadlines early.
� LL is also an optimal scheduling for mono-processor

systems.
� Dynamic priorities � cannot be used with a fixed prio OS.
� LL scheduling requires the knowledge of the execution

time.

- 32 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

17

- 33 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Scheduling without preemption (2)

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t=0
� deadline missed, but schedule is possible (start T2 first)
� scheduler is not optimal � contradiction! q.e.d.

- 34 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Scheduling without preemption

Preemption not allowed: � optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

Preemption not allowed: � optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

�Knowledge about the future is needed for optimal
scheduling algorithms

�No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

18

- 35 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Scheduling with precedence constraints

Task graph and possible schedule:Task graph and possible schedule:

Schedule can be stored in table.Schedule can be stored in table.

- 36 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and among the tasks
with no successors inserts the one with the latest deadline into
a queue. It then repeats this process, putting tasks whose
successor have all been selected into the queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

LDF [Lawler, 1973]: reads the task graph and among the tasks
with no successors inserts the one with the latest deadline into
a queue. It then repeats this process, putting tasks whose
successor have all been selected into the queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

If no local deadlines exist, LDF performs just a topological sort.If no local deadlines exist, LDF performs just a topological sort.

19

- 37 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].
This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm
developed by Stankovic and Ramamritham can be used.

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of
dependent tasks into a set of independent tasks with different
timing parameters [Chetto90].
This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm
developed by Stankovic and Ramamritham can be used.

- 38 - P. Marwedel, Univ. Dortmund, Informatik 12, 2005/6

Universität DortmundUniversität Dortmund

Summary

Worst case execution times (WCET)
Definition of scheduling terms

Hard vs. soft deadlines
Static vs. dynamic �TT-OS
Schedulability

Scheduling approaches
– Aperiodic tasks

• No precedences
– Simultaneous (�EDD)

& Asynchronous Arrival Times (�EDF, LL)
• Precedences

– Simultaneous (� LDF) & Asynchronous Arrival
Times (� mEDF)

Worst case execution times (WCET)
Definition of scheduling terms

Hard vs. soft deadlines
Static vs. dynamic �TT-OS
Schedulability

Scheduling approaches
– Aperiodic tasks

• No precedences
– Simultaneous (�EDD)

& Asynchronous Arrival Times (�EDF, LL)
• Precedences

– Simultaneous (� LDF) & Asynchronous Arrival
Times (� mEDF)

