
1

- 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Configurability -

Configurability
No single RTOS will fit all needs, no overhead for
unused functions tolerated � configurability needed.
� simplest form: remove unused functions (by linker ?).
� Conditional compilation (using #if and #ifdef commands).
� Dynamic data might be replaced by static data.
� Advanced compile-time evaluation useful.
� Object-orientation could lead to a derivation subclasses.

Verification a potential problem of systems
with a large number of derived OSs:
� Each derived OS must be tested thoroughly;
� potential problem for eCos (open source RTOS from Red

Hat), including 100 to 200 configuration points [Takada, 01].

Configurability
No single RTOS will fit all needs, no overhead for
unused functions tolerated � configurability needed.
� simplest form: remove unused functions (by linker ?).
� Conditional compilation (using #if and #ifdef commands).
� Dynamic data might be replaced by static data.
� Advanced compile-time evaluation useful.
� Object-orientation could lead to a derivation subclasses.

Verification a potential problem of systems
with a large number of derived OSs:
� Each derived OS must be tested thoroughly;
� potential problem for eCos (open source RTOS from Red

Hat), including 100 to 200 configuration points [Takada, 01].

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: Configuration of VxWorks

© Windriver

ht
tp

://
w

w
w

.w
in

dr
iv

er
.c

om
/p

ro
du

ct
s/

de
ve

lo
pm

en
t_

to
ol

s/
id

e/
to

rn
ad

o2
/to

rn
ad

o_
2_

ds
.p

df

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
-Requirement: Disc and network handled by tasks-

Disc & network handled by tasks instead of integrated
drivers
Many ES without disc, a keyboard, a screen or a mouse.
Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.
Relatively slow discs & networks can be handled by tasks.

Disc & network handled by tasks instead of integrated
drivers
Many ES without disc, a keyboard, a screen or a mouse.
Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.
Relatively slow discs & networks can be handled by tasks.

RTOS Standard OS

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: WindRiver Platform Industrial Automation

© Windriver

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Protection is optional-

Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

No desire to implement I/O instructions as privileged
instructions and tasks can be allowed to do their own I/O.

Example: Let switch be the address of some switch
Simply use

load register,switch
instead of OS call.

No desire to implement I/O instructions as privileged
instructions and tasks can be allowed to do their own I/O.

Example: Let switch be the address of some switch
Simply use

load register,switch
instead of OS call.

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Interrupts not restricted to OS -

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since
� embedded programs can be considered to be tested,
� since protection is not necessary and
� since efficient control over a variety of devices is required,
� it is possible to let interrupts directly start or stop tasks (by

storing the tasks start address in the interrupt table).
� More efficient than going through OS services.
� However, composability suffers: if a specific task is

connected to some interrupt, it may be difficult to add
another task which also needs to be started by an event.

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since
� embedded programs can be considered to be tested,
� since protection is not necessary and
� since efficient control over a variety of devices is required,
� it is possible to let interrupts directly start or stop tasks (by

storing the tasks start address in the interrupt table).
� More efficient than going through OS services.
� However, composability suffers: if a specific task is

connected to some interrupt, it may be difficult to add
another task which also needs to be started by an event.

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Real-time capability-

Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (1) -

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems

The following are the three key requirements

1. The timing behavior of the OS must be predictable.
∀ services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:

� unlike standard Java,

� short times during which interrupts are disabled,

� contiguous files to avoid unpredictable head
movements.

[Takada, 2001]

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems

The following are the three key requirements

1. The timing behavior of the OS must be predictable.
∀ services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:

� unlike standard Java,

� short times during which interrupts are disabled,

� contiguous files to avoid unpredictable head
movements.

[Takada, 2001]

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (2) -

2. OS must manage the timing and scheduling

� OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

� OS must provide precise time services with high
resolution.

[Takada, 2001]

2. OS must manage the timing and scheduling

� OS possibly has to be aware of task deadlines;
(unless scheduling is done off-line).

� OS must provide precise time services with high
resolution.

[Takada, 2001]

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Time services

Time plays a central role in “real-time” systems.
Actual time is described by real numbers.
Two discrete standards are used in real-time equipment:
• International atomic time TAI

(french: temps atomic internationale)
Free of any artificial artifacts.

• Universal Time Coordinated (UTC)
UTC is defined by astronomical standards

UTC and TAI were identical on Jan. 1st, 1958.
In the meantime, 30 seconds had to be added.
Not without problems: New Year may start twice per night.

Time plays a central role in “real-time” systems.
Actual time is described by real numbers.
Two discrete standards are used in real-time equipment:
• International atomic time TAI

(french: temps atomic internationale)
Free of any artificial artifacts.

• Universal Time Coordinated (UTC)
UTC is defined by astronomical standards

UTC and TAI were identical on Jan. 1st, 1958.
In the meantime, 30 seconds had to be added.
Not without problems: New Year may start twice per night.

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Internal synchronization

Synchronization with one master clock
� Typically used in startup-phases

Distributed synchronization:
1. Collect information from neighbors
2. Compute correction value
3. Set correction value.
Precision of step 1 depends on how information is collected:
Application level: ~500 µs to 5 ms
Operation system kernel: 10 µs to 100 µs
Communication hardware: < 10 µs

Synchronization with one master clock
� Typically used in startup-phases

Distributed synchronization:
1. Collect information from neighbors
2. Compute correction value
3. Set correction value.
Precision of step 1 depends on how information is collected:
Application level: ~500 µs to 5 ms
Operation system kernel: 10 µs to 100 µs
Communication hardware: < 10 µs

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Byzantine Error

Erroneous local clocks can have an impact on the computed
local time.
Advanced algorithms are fault-tolerant with respect to
Byzantine errors. Excluding k erroneous clocks is possible
with 3k+1 clocks (largest and smallest values will be
excluded.
Many publications in this area.

Erroneous local clocks can have an impact on the computed
local time.
Advanced algorithms are fault-tolerant with respect to
Byzantine errors. Excluding k erroneous clocks is possible
with 3k+1 clocks (largest and smallest values will be
excluded.
Many publications in this area.

t

k=1

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

External synchronization

External synchronization guarantees consistency with actual
physical time.
Recent trend is to use GPS for ext. synchronization
GPS offers TAI and UTC time information.
Resolution is about 100 ns.

External synchronization guarantees consistency with actual
physical time.
Recent trend is to use GPS for ext. synchronization
GPS offers TAI and UTC time information.
Resolution is about 100 ns.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Problems with external synchronization

Problematic from the perspective of fault tolerance:
Erroneous values are copied to all stations.
Consequence: Accepting only small changes to local time.

Many time formats too restricted;
e.g.: NTP protocol includes only years up to 2036

Problematic from the perspective of fault tolerance:
Erroneous values are copied to all stations.
Consequence: Accepting only small changes to local time.

Many time formats too restricted;
e.g.: NTP protocol includes only years up to 2036

For time services and global
synchronization of clocks
synchronization see Kopetz, 1997.

For time services and global
synchronization of clocks
synchronization see Kopetz, 1997.

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (3) -

3. The OS must be fast
Practically important.

[Takada, 2001]

3. The OS must be fast
Practically important.

[Takada, 2001]

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

RTOS-Kernels

Distinction between
• real-time kernels and modified kernels of standard OSes.

Distinction between
• real-time kernels and modified kernels of standard OSes.

Distinction between
• general RTOSes and RTOSes for specific domains,
• standard APIs (e.g. POSIX RT-Extension of Unix, ITRON,

OSEK) or proprietary APIs.

Distinction between
• general RTOSes and RTOSes for specific domains,
• standard APIs (e.g. POSIX RT-Extension of Unix, ITRON,

OSEK) or proprietary APIs.

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Functionality of RTOS-Kernels

Includes
• processor management,
• memory management,
• and timer management;
• task management (resume, wait etc),
• inter-task communication and synchronization.

Includes
• processor management,
• memory management,
• and timer management;
• task management (resume, wait etc),
• inter-task communication and synchronization.

resource management

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
1. Fast proprietary kernels

Fast proprietary kernels
For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

QNX, PDOS, VCOS, VTRX32, VxWORKS.

Fast proprietary kernels
For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

QNX, PDOS, VCOS, VTRX32, VxWORKS.

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
2. Real-time extensions to standard OSs

Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

- 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: RT-Linux

RT-tasks cannot use
standard OS calls.
Commercially available from
fsmlabs (www.fsmlabs.com)

RT-tasks cannot use
standard OS calls.
Commercially available from
fsmlabs (www.fsmlabs.com)

Hardware

RT-Task RT-Task

RT-Linux RT-Scheduler

Linux-Kernel

driver

scheduler

Init Bash Mozilla

interrupts

interrupts

interrupts

I/O

11

- 21 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: Posix 1.b RT-extensions to Linux

Standard scheduler can be replaced by POSIX scheduler
implementing priorities for RT tasks
Standard scheduler can be replaced by POSIX scheduler
implementing priorities for RT tasks

Hardware

Linux-Kernel

driver

POSIX 1.b scheduler

Init Bash Mozilla

I/O, interrupts

RT-Task RT-Task

Special RT-calls and
standard OS calls
available.
Easy programming,
no guarantee for
meeting deadline

Special RT-calls and
standard OS calls
available.
Easy programming,
no guarantee for
meeting deadline

- 22 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Evaluation (Gupta)

According to Gupta, trying to use a version of a standard
OS:
not the correct approach because too many basic and
inappropriate underlying assumptions still exist such as
optimizing for the average case (rather than the worst case),
... ignoring most if not all semantic information, and
independent CPU scheduling and resource allocation.
Dependences between tasks not frequent for most
applications of std. OSs & therefore frequently ignored.
Situation different for ES since dependences between tasks
are quite common.

According to Gupta, trying to use a version of a standard
OS:
not the correct approach because too many basic and
inappropriate underlying assumptions still exist such as
optimizing for the average case (rather than the worst case),
... ignoring most if not all semantic information, and
independent CPU scheduling and resource allocation.
Dependences between tasks not frequent for most
applications of std. OSs & therefore frequently ignored.
Situation different for ES since dependences between tasks
are quite common.

12

- 23 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
3. Research systems trying to avoid limitations

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and
Melody
Research issues [Takada, 2001]:
� low overhead memory protection,
� temporal protection of computing resources
� RTOSes for on-chip multiprocessors
� support for continuous media
� quality of service (QoS) control.

Competition between
� traditional vendors (e.g. Wind River Systems) and
� Embedded Windows XP and Windows CE

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and
Melody
Research issues [Takada, 2001]:
� low overhead memory protection,
� temporal protection of computing resources
� RTOSes for on-chip multiprocessors
� support for continuous media
� quality of service (QoS) control.

Competition between
� traditional vendors (e.g. Wind River Systems) and
� Embedded Windows XP and Windows CEM

ar
ke

t

- 24 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Middleware

1. Real-time data bases
2. Access to remote objects

1. Real-time data bases
2. Access to remote objects

13

- 25 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time data bases (1)

Goal: store and retrieve persistent information
Transaction= sequence of read and write operations
Changes not final until they are committed
Requested (“ACID”) properties of transactions
1. Atomic: state information as if transaction is either

completed or had no effect at all.
2. Consistent: Set of values retrieved from several

accesses to the data base must be possible in the world
modeled.

3. Isolation: No user should see intermediate states of
transactions

4. Durability: results of transactions should be persistent.

Goal: store and retrieve persistent information
Transaction= sequence of read and write operations
Changes not final until they are committed
Requested (“ACID”) properties of transactions
1. Atomic: state information as if transaction is either

completed or had no effect at all.
2. Consistent: Set of values retrieved from several

accesses to the data base must be possible in the world
modeled.

3. Isolation: No user should see intermediate states of
transactions

4. Durability: results of transactions should be persistent.

- 26 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time data bases (2)

Problems with implementing real-time data bases:
1. transactions may be aborted various times before they

are finally committed.
2. For hard discs, the access times to discs are hardly

predictable.

Problems with implementing real-time data bases:
1. transactions may be aborted various times before they

are finally committed.
2. For hard discs, the access times to discs are hardly

predictable.

Possible solutions:
1. Main memory data bases
2. Relax ACID requirements

Possible solutions:
1. Main memory data bases
2. Relax ACID requirements

14

- 27 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Access to remote objects

Software packages for access to remote objects;
Example:
CORBA (Common Object Request Broker Architecture).
Information sent to Object Request Broker (ORB) via local stub.
ORB determines location to be accessed and sends information
via the IIOP I/O protocol.

Software packages for access to remote objects;
Example:
CORBA (Common Object Request Broker Architecture).
Information sent to Object Request Broker (ORB) via local stub.
ORB determines location to be accessed and sends information
via the IIOP I/O protocol.

Access times not predictable.Access times not predictable.

- 28 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time (RT-) CORBA

A very essential feature of RT-CORBA is to provide
� end-to-end predictability of timeliness in a fixed priority

system.
� This involves respecting thread priorities between client

and server for resolving resource contention,
� and bounding the latencies of operation invocations.
� Thread priorities might not be respected when threads

obtain mutually exclusive access to resources (priority
inversion).

� RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen.

A very essential feature of RT-CORBA is to provide
� end-to-end predictability of timeliness in a fixed priority

system.
� This involves respecting thread priorities between client

and server for resolving resource contention,
� and bounding the latencies of operation invocations.
� Thread priorities might not be respected when threads

obtain mutually exclusive access to resources (priority
inversion).

� RT-CORBA includes provisions for bounding the time
during which such priority inversion can happen.

15

- 29 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time COBRA
- Thread priority management -

� RT-CORBA includes facilities for thread priority
management.

� Priority independent of the priorities of the underlying
OS, even though it is compatible with the RT-extensions
of the POSIX standard for OSs [Harbour, 1993].

� The thread priority of clients can be propagated to the
server side.

� Priority management for primitives for mutually exclusive
access to resources. Priority inheritance protocol must
be available in implementations of RT-CORBA.

� Pools of preexisting threads avoid the overhead of
thread creation and thread-construction.

� RT-CORBA includes facilities for thread priority
management.

� Priority independent of the priorities of the underlying
OS, even though it is compatible with the RT-extensions
of the POSIX standard for OSs [Harbour, 1993].

� The thread priority of clients can be propagated to the
server side.

� Priority management for primitives for mutually exclusive
access to resources. Priority inheritance protocol must
be available in implementations of RT-CORBA.

� Pools of preexisting threads avoid the overhead of
thread creation and thread-construction.

- 30 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Message passing interface (MPI)

� Message passing interface (MPI): alternative to CORBA
� MPI/RT: a real-time version of MPI [MPI/RT forum,

2001].
� MPI-RT does not cover issues such as thread creation

and termination.
� MPI/RT is conceived as a potential layer between the

operating system and standard (non real-time) MPI.

� Message passing interface (MPI): alternative to CORBA
� MPI/RT: a real-time version of MPI [MPI/RT forum,

2001].
� MPI-RT does not cover issues such as thread creation

and termination.
� MPI/RT is conceived as a potential layer between the

operating system and standard (non real-time) MPI.

16

- 31 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Summary

� General requirements for embedded operating systems
• Configurability, I/O, interrupts

� General properties of real-time operating systems
• Predictability
• Time services, synchronization
• Classes of RTOSs, device driver embedding

� Middleware (briefly)
• RT-data bases
• Access to remote objects (RT-CORBA, RT-MPI)

� General requirements for embedded operating systems
• Configurability, I/O, interrupts

� General properties of real-time operating systems
• Predictability
• Time services, synchronization
• Classes of RTOSs, device driver embedding

� Middleware (briefly)
• RT-data bases
• Access to remote objects (RT-CORBA, RT-MPI)

