
EECS 211
Advanced System Software

Winter 2006

Assignment 2

Posted: January 26, 2006
Due: February 2, 2006

Topic: Concurrency and Synchronization in Nachos

Instructions:

The goal of this second assignment is to develop, implement and test
concurrency and synchronization primitives in the Nachos system. This
assignment is based on and partially follows the “Nachos Assignment 1”
described in the file doc/ t hr ead. ps of the Nachos installation (see our
previous assignment). The instructions below assume that you read
doc/ t hr eads. ps in parallel.

Task 1: Understand the given framework

Go into the t hr eads directory. Run the given program nachos to test the given
code. Use the debugger gdb or ddd to run the program step by step. Trace the
execution path by reading through the appropriate source files. Make sure you
understand what is going on in the function SWI TCH (the debugger may be
confusing!) Run the program also with the debug option - d. You may also want
to experiment with the option –r s <seed>. (Note: additional options to Nachos
are available, see the comments in file mai n. cc , but most do apply to later
assignments only).

Deliverable 1: (10 points)

Brief description t ask1. t xt (about 5 sentences) describing the execution path
of this unmodified program and the functionality of the SWI TCH function.
Briefly describe also (again, in about 5 sentences), what changes if you supply
option –r s 1 and why this happens.

Task 2: Implement the missing locks and condition variables in Nachos

See item 1 in doc/ t hr eads. ps . Complete the code for the classes Lock and
Condi t i on in files synch. h and synch. cc . It will be helpful to look at the code
in file synchl i st . cc and synchl i st . h to understand the use of locks
(member l ock) and condition variables (member l i s t Empt y).

Note that in order to test your code you will need to implement Task 3 below.

Deliverable 2: (20 points)

Completed source files synch. h and synch. cc (with proper comments!).

Task 3: Implement a producer-consumer example with a bounded buffer

See item 2 in doc/ t hr eads. ps . To implement this, replace/modify/extend the
code in file t hr eadt est . cc such that it creates producer and consumer threads
which communicate via a bounded buffer (see also chapter 6.6.1 in the textbook).
The producer and consumer threads should run as two functions named
Pr oducer and Consumer , respectively. The producer thread should put a string
character by character into the buffer, whereas the consumer thread reads a
string character by character and prints it to the screen.
The bounded buffer should be implemented as a class Buf f er which allows the
maximum number of characters in the buffer to be set at the time of instantiation
(constructor parameter). The class Buf f er should provide two methods named
Put and Get which place a character into the buffer, or take one character out,
respectively. Make sure to properly synchronize these methods using your locks
and condition variables implemented above. These should be instantiated as
members of the class Buf f er and properly be used by the Put and Get
methods (not by the Pr oducer and Consumer functions!).

Test your bounded buffer example using the following 3 cases:

1. 1 producer, 1 consumer, buffer size 10
2. 1 producer, 2 consumers, buffer size 5
3. 2 producers, 1 consumer, buffer size 10

For each case, use the following test message:
“The qui ck br own f ox j umps over t he l azy dog. ”

For switching between these test cases, you may use preprocessor directives.
Test case 1 should be run if TEST1 is defined at compile time, case 2 should be
run if TEST2 is defined, etc.
Test your code thoroughly! Make use of the –r s <seed> option to test context
switches at different times. Your program should run flawlessly in any case. Also,

please add sufficient comments and DEBUG statements in the code to make
your debugging (and my grading!) easier.

Deliverable 3: (40 points)

a) Modified source code t hr eadt est . cc with class Buf f er and the
Pr oducer and Consumer functions

b) A type-script bounded_buf f er . l og (copy of your shell outputs) showing
that your program can correctly run the three test cases listed above.

Submission instructions:

To submit your homework, send an email with subject “EECS 211 HW 2” to the
course instructor at doemer@uci.edu. Please submit the deliverables listed
above as attachments.

To ensure proper credit, be sure to send your email before the deadline:
February 2, 2006, 12am (midnight).

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

