
EECS 211
Advanced System Software

Winter 2006

Assignment 3

Posted: February 2, 2006
Due: February 9, 2006

Topic: Scheduling in Nachos

Instructions:

The goal of this third assignment is to develop, implement and test task
scheduling in the Nachos system. This assignment continues the previous
assignment based on the “Nachos Assignment 1” described in the file
doc/ t hr ead. ps of the Nachos installation. Again, the instructions below
assume that you read doc/ t hr eads. ps in parallel.

Task 1: Implement a priority-based scheduler

See item 8 in doc/ t hr eads. ps .
Again, we will work in the t hr eads directory. As you have noticed in the
previous assignment, the given Nachos scheduler implements a straightforward
FIFO scheduling policy. We will change that now into a priority-based policy.
With each thread, we will associate a (static) priority between 0 and 9, 0 being
the highest priority (first choice).
Follow the instructions to item 8 to implement the priority scheduling. You will
need to modify the code in the files t hr ead. cc , t hr ead. h, schedul er . cc ,
and schedul er . h. Note that there is not much new code to write.

Deliverable 1: (20 points)

Adjusted source files t hr ead. cc , t hr ead. h, schedul er . cc , and
schedul er . h (with proper comments!).

Task 2: Test the priority-based scheduler

In order to test your code, we will reuse the bounded-buffer scenario from the
previous assignment. This time, however, construct a system of 3 producers, P1,
P2, P3, and 1 consumer C, which will communicate over 1 bounded buffer with a
capacity of 5 characters. Producer P1 should send the string “AAA”, P2 should
send “BBB”, and P3 “CCC”. The consumer thread simply should print the string
of the received characters.

Depending on the priorities assigned to the 4 threads, the string received by the
consumer will be different. The usage of the buffer (number of characters in it)
also will depend on the priorities assigned to the threads.

Find priorities for the four threads, such that the

(a) output is “AAABBBCCC” with minimal buffer usage
(b) output is “CCCBBBAAA” with maximal buffer usage

These conditions should hold even in the case of preemptive scheduling!
You may want to use the –r s <seed> option to enable random context switches
to simulate a preemptive scheduler.

Deliverable 2: (15 points)

a) Modified source code t hr eadt est . cc with the bounded buffer scenario
as described above

b) A text file pr i or i t y. t xt explaining the necessary priorities of the
threads for each of the two cases (a) and (b)

c) A type-script pr i or i t y. l og (copy of your shell outputs) showing that
your program correctly produces the expected output string

Task 3: Cooperative Multithreading (Extra Credit!)

Can you come up with a scheme (and working implementation) that lets the
consumer receive the string “ABCABCABC”? The three producer threads still
should send the strings “AAA”, “BBB”, and “CCC”, and the buffer should be
unmodified.

Hint: Consider the Thread->Yield() function to make the producers “cooperative”.

Optional Deliverable 3: (10 extra points)

d) Modified source code ext r a_t hr eadt est . cc
e) A text file ext r a. t xt explaining your implementation
f) A type-script ext r a. l og (copy of your shell outputs) showing that your

program correctly produces the expected output string

Submission instructions:

To submit your homework, send an email with subject “EECS 211 HW 3” to the
course instructor at doemer@uci.edu. Please submit the deliverables listed
above as attachments.

To ensure proper credit, be sure to send your email before the deadline:
February 9, 2006, 11:59pm.

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

