
EECS 211
Advanced System Software

Winter 2006

Assignment 4

Posted: February 9, 2006
Due: February 16, 2006

Topic: User programs and system calls in Nachos

Instructions:

The goal of this fourth assignment is to develop, implement and test support for
user programs making system-calls to the Nachos kernel. This assignment
follows the first task of “Nachos Assignment 2” described in the file
doc/userprog.ps of the Nachos installation. The instructions below assume
that you read doc/userprog.ps in parallel.

Task 1: Understand the given framework

Go into the userprog directory. Run the given program nachos with the given
user-program ../test/halt to test the given code. Trace the execution path
by using the built-in debugging facilities. Run the program step by step using the
debugger gdb. Finally, read in detail through the given sources provided in the
userprog directory.
Make sure you understand what is going on when the user program is compiled,
is loaded, executes, issues a system call, and dies.

To fully understand the user program execution on the emulated MIPS machine,
read also the sources in other directories (e.g. machine), as listed in the
doc/userprog.ps document. Note that, however, you will only need to change
files in the userprog directory for this particular assignment. All other files
should be left unmodified.

Deliverable 1: (20 points)

Briefly describe in a text file task1.txt the compilation, loading, execution,
system-call, and termination of user programs in the Nachos environment (5-10
sentences).
Briefly describe also the boundary between user- and kernel-land in Nachos.
Specify for critical functions whether they belong to kernel- or to user-land (about
5 sentences).

Task 2: Implement basic exception handling and system calls for file I/O

See item 1 in doc/userprog.ps.
Modify and complete the code in file exception.cc to support the exception
types listed in ../machine/machine.h and the system calls listed in
syscall.h. To do this, implement a (big) switch statement in the function
ExceptionHandler()with one case for each exception type. The
SyscallException should be handled by a new function SystemCall that
again contains a (big) switch statement to handle each type of system call. All
this code should go into file exception.cc.
Note that, except for the SyscallException, all exceptions are fatal errors for
the user program at this time (in later assignments, we will change that). Thus,
the kernel should print an error message (for us to observe the error) and then
cleanly terminate the user program.

We will first limit ourselves to support only basic system-calls. For this
assignment, your code should support the following 7 system-calls:

(a) SC_Halt
(b) SC_Exit
(c) SC_Create
(d) SC_Open
(e) SC_Read
(f) SC_Write
(g) SC_Close

For the file I/O system calls, you should support input from the console
(OpenFileId ConsoleInput, alias stdin), output to the console
(OpenFileId ConsoleOutput, alias stdout), and input and output to regular
files (OpenFileId > 1). For console I/O, it will be necessary to implement a
synchronous console class (for simplicity, place the class SynchConsole into
the file exception.cc). You will find the class SynchDisk provided in the
filesys directory very helpful as it contains very similar functionality.

To properly handle the file I/O system calls, you will need to maintain a list of
open files for each process. Class AddrSpace (in files addrspace.h and
addrspace.cc) is a good place to keep this list and its maintenance functions
because each process is now assigned such a space (via the Thread->space
pointer). To keep things simple, maintain an array of 5 entries for open files. The
first two entries should be reserved for ConsoleInput (alias stdin) and
ConsoleOutput (alias stdout). Make sure to check parameters provided by
I/O system calls properly and cleanly abort user programs which attempt to write
into an unopened file or try to read from stdout, etc. Also, make sure to close
any files left open when the user program exits or is aborted.

Note that in order to have a “bullet-proof” kernel, all possible “bad” things a user
program may do (e.g. raising unsupported exceptions or providing invalid
arguments to system calls), must not disturb any kernel data structures, nor any
other processes. Instead, a misbehaving application must be properly terminated
and cleaned up. Make sure that your implementation takes care of this.

Deliverable 2: (20 points)

a) Extended source file exception.cc.
b) Extended source files addrspace.h and addrspace.cc.

Task 3: Validate your implementation using simple test programs

To test your exception handling and the implemented system calls, create a set
of simple Nachos user programs as test cases and run them on your kernel. To
start, you may want to take a look at the few examples that are already provided
in the test directory.

(a) Program HelloWorld.c:
should print the string HelloWorld to the console and then cleanly exit

(b) Program Name.c:
should ask the user for her/his name and then print it backwards

(c) Program Copy.c:
should ask the user for two file names and copy the contents of the
first file into the second file

You should also test if you kernel is “bullet-proof”. Create and run the following
“bad” examples:

(d) Program WriteToNull.c:
tries to assign the value 42 to memory address 0

(e) Program DivisionByZero.c:
tries to divide 42 by 0

(f) Program WriteToStdin.c:
tries to write a character ‘x’ to the standard input stream

Deliverable 3: (30 points)

For each of the programs above, submit its source file (e.g. HelloWorld.c) and
a corresponding log file (e.g. HelloWorld.log) showing that the program
successful runs (or fails!) on your Nachos kernel.

Submission instructions:

To submit your homework, send an email with subject “EECS 211 HW 4” to the
course instructor at doemer@uci.edu. Please include the deliverables listed
above as attachments.

To ensure proper credit, be sure to send your email before the deadline:
February 16, 2006, 11:59pm.

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

