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� Event Ordering

� Mutual Exclusion 

� Atomicity

� Concurrency Control

� Deadlock Handling

� Election Algorithms

� Reaching Agreement
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Chapter ObjectivesChapter Objectives

� To describe various methods for achieving mutual exclusion in 
a distributed system

� To explain how atomic transactions can be implemented in a 
distributed system

� To show how some of the concurrency-control schemes 
discussed in Chapter 6 can be modified for use in a 
distributed environment

� To present schemes for handling deadlock prevention, 
deadlock avoidance, and deadlock detection in a distributed 
system
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Event OrderingEvent Ordering

� Happened-before relation (denoted by →)

� If A and B are events in the same process, and A was 
executed before B, then A → B

� If A is the event of sending a message by one process and B is 
the event of receiving that message by another process, then A
→ B

� If A → B and B → C then A → C
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Relative Time for Three Concurrent ProcessesRelative Time for Three Concurrent Processes
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Implementation of Implementation of →→→→→→→→

� Associate a timestamp with each system event

� Require that for every pair of events A and B, if A → B, then the 
timestamp of A is less than the timestamp of B

� Within each process Pi a logical clock, LCi is associated

� The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a 
process 

� Logical clock is monotonically increasing

� A process advances its logical clock when it receives a message whose 
timestamp is greater than the current value of its logical clock

� If the timestamps of two events A and B are the same, then the events 
are concurrent

� We may use the process identity numbers to break ties and to 
create a total ordering
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Distributed Mutual Exclusion (DME) Distributed Mutual Exclusion (DME) 

� Assumptions

� The system consists of  n processes; each process Pi resides 
at a different processor

� Each process has a critical section that requires mutual 
exclusion

� Requirement

� If Pi is executing in its critical section, then no other process Pj
is executing in its critical section

� We present two algorithms to ensure the mutual exclusion 
execution of processes in their critical sections 
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DME:  Centralized ApproachDME:  Centralized Approach

� One of the processes in the system is chosen to coordinate the entry 
to the critical section

� A process that wants to enter its critical section sends a request 
message to the coordinator

� The coordinator decides which process can enter the critical section 
next, and its sends that process a reply message

� When the process receives a reply message from the coordinator, it 
enters its critical section

� After exiting its critical section, the process sends a release message 
to the coordinator and proceeds with its execution 

� This scheme requires three messages per critical-section entry:

� request 

� reply

� release
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DME:  Fully Distributed ApproachDME:  Fully Distributed Approach

� When process Pi wants to enter its critical section, it generates a 
new timestamp, TS, and sends the message request (Pi, TS) to all 
other processes in the system

� When process Pj receives a request message, it may reply 
immediately or it may defer sending a reply back

� When process Pi receives a reply message from all other 
processes in the system, it can enter its critical section

� After exiting its critical section, the process sends reply messages 
to all its deferred requests
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DME:  Fully Distributed Approach (Cont.)DME:  Fully Distributed Approach (Cont.)

� The decision whether process Pj replies immediately to a 
request(Pi, TS) message or defers its reply is based on three 
factors:

� If Pj is in its critical section, then it defers its reply to Pi

� If Pj does not want to enter its critical section, then it sends a 
reply immediately to Pi

� If Pj wants to enter its critical section but has not yet entered it,
then it compares its own request timestamp with the timestamp 
TS

� If its own request timestamp is greater than TS, then it 
sends a reply immediately to Pi (Pi asked first)

� Otherwise, the reply is deferred
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Desirable Behavior of Fully Distributed ApproachDesirable Behavior of Fully Distributed Approach

� Freedom from Deadlock is ensured

� Freedom from starvation is ensured, since entry to the critical 
section is scheduled according to the timestamp ordering

� The timestamp ordering ensures that processes are served in a 
first-come, first served order 

� The number of messages per critical-section entry is 

2 x (n – 1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently 
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Three Undesirable ConsequencesThree Undesirable Consequences

� The processes need to know the identity of all other processes in 
the system, which makes the dynamic addition and removal of 
processes more complex

� If one of the processes fails, then the entire scheme collapses

� This can be dealt with by continuously monitoring the state of 
all the processes in the system

� Processes that have not entered their critical section must pause 
frequently to assure other processes that they intend to enter the 
critical section

� This protocol is therefore suited for small, stable sets of 
cooperating processes
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Atomicity Atomicity 

� Either all the operations associated with a program unit are 
executed to completion, or none are performed

� Ensuring atomicity in a distributed system requires a transaction 
coordinator, which is responsible for the following:

� Starting the execution of the transaction

� Breaking the transaction into a number of subtransactions, and 
distribution these subtransactions to the appropriate sites for 
execution

� Coordinating the termination of the transaction, which may 
result in the transaction being committed at all sites or aborted 
at all sites 
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TwoTwo--Phase Commit Protocol (2PC)Phase Commit Protocol (2PC)

� Assumes fail-stop model

� Execution of the protocol is initiated by the coordinator after the last 
step of the transaction has been reached

� When the protocol is initiated, the transaction may still be executing 
at some of the local sites

� The protocol involves all the local sites at which the transaction 
executed

� Example:  Let T be a transaction initiated at site Si and let the 
transaction coordinator at Si be Ci
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Phase 1:  Obtaining a DecisionPhase 1:  Obtaining a Decision

� Ci adds <prepare T> record to the log 

� Ci sends <prepare T> message to all sites

� When a site receives a <prepare T> message, the transaction 
manager determines if it can commit the transaction

� If no:  add <no T> record to the log and respond to Ci with 
<abort T>

� If yes:

� add <ready T> record to the log

� force all log records for T onto stable storage

� transaction manager sends <ready T> message to Ci
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Phase 1 (Cont.)Phase 1 (Cont.)

� Coordinator collects responses

� All respond “ready”, 
decision is commit

� At least one response is “abort”,
decision is abort

� At least one participant fails to respond within time out period,
decision is abort



9

18.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 2:  Recording Decision in the DatabasePhase 2:  Recording Decision in the Database

� Coordinator adds a decision record 

<abort T> or <commit T>

to its log and forces record onto stable storage

� Once that record reaches stable storage it is irrevocable (even if 
failures occur)

� Coordinator sends a message to each participant informing it of the 
decision (commit or abort)

� Participants take appropriate action locally
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Failure Handling in 2PC Failure Handling in 2PC –– Site FailureSite Failure

� The log contains a <commit T> record

� In this case, the site executes redo(T)

� The log contains an <abort T> record

� In this case, the site executes undo(T)

� The contains a <ready T> record; consult Ci

� If Ci is down, site sends query-status T message to the other 
sites

� The log contains no control records concerning T

� In this case, the site executes undo(T)
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Failure Handling in 2PC Failure Handling in 2PC –– Coordinator Coordinator CCii FailureFailure

� If an active site contains a <commit T> record in its log, the T must 
be committed

� If an active site contains an <abort T> record in its log, then T must 
be aborted

� If some active site does not contain the record <ready T> in its log 
then the failed coordinator Ci cannot have decided to 
commit T

� Rather than wait for Ci to recover, it is preferable to abort T

� All active sites have a <ready T> record in their logs, but no 
additional control records

� In this case we must wait for the coordinator to recover

� Blocking problem  – T is blocked pending the recovery of site Si


