
1

Chapter 18: Distributed CoordinationChapter 18: Distributed Coordination

18.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 18 Distributed CoordinationChapter 18 Distributed Coordination

� Event Ordering

� Mutual Exclusion

� Atomicity

� Concurrency Control

� Deadlock Handling

� Election Algorithms

� Reaching Agreement

2

18.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter ObjectivesChapter Objectives

� To describe various methods for achieving mutual exclusion in
a distributed system

� To explain how atomic transactions can be implemented in a
distributed system

� To show how some of the concurrency-control schemes
discussed in Chapter 6 can be modified for use in a
distributed environment

� To present schemes for handling deadlock prevention,
deadlock avoidance, and deadlock detection in a distributed
system

18.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Event OrderingEvent Ordering

� Happened-before relation (denoted by →)

� If A and B are events in the same process, and A was
executed before B, then A → B

� If A is the event of sending a message by one process and B is
the event of receiving that message by another process, then A
→ B

� If A → B and B → C then A → C

3

18.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Relative Time for Three Concurrent ProcessesRelative Time for Three Concurrent Processes

18.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation of Implementation of →→→→→→→→

� Associate a timestamp with each system event

� Require that for every pair of events A and B, if A → B, then the
timestamp of A is less than the timestamp of B

� Within each process Pi a logical clock, LCi is associated

� The logical clock can be implemented as a simple counter that is
incremented between any two successive events executed within a
process

� Logical clock is monotonically increasing

� A process advances its logical clock when it receives a message whose
timestamp is greater than the current value of its logical clock

� If the timestamps of two events A and B are the same, then the events
are concurrent

� We may use the process identity numbers to break ties and to
create a total ordering

4

18.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Distributed Mutual Exclusion (DME) Distributed Mutual Exclusion (DME)

� Assumptions

� The system consists of n processes; each process Pi resides
at a different processor

� Each process has a critical section that requires mutual
exclusion

� Requirement

� If Pi is executing in its critical section, then no other process Pj
is executing in its critical section

� We present two algorithms to ensure the mutual exclusion
execution of processes in their critical sections

18.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Centralized ApproachDME: Centralized Approach

� One of the processes in the system is chosen to coordinate the entry
to the critical section

� A process that wants to enter its critical section sends a request
message to the coordinator

� The coordinator decides which process can enter the critical section
next, and its sends that process a reply message

� When the process receives a reply message from the coordinator, it
enters its critical section

� After exiting its critical section, the process sends a release message
to the coordinator and proceeds with its execution

� This scheme requires three messages per critical-section entry:

� request

� reply

� release

5

18.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Fully Distributed ApproachDME: Fully Distributed Approach

� When process Pi wants to enter its critical section, it generates a
new timestamp, TS, and sends the message request (Pi, TS) to all
other processes in the system

� When process Pj receives a request message, it may reply
immediately or it may defer sending a reply back

� When process Pi receives a reply message from all other
processes in the system, it can enter its critical section

� After exiting its critical section, the process sends reply messages
to all its deferred requests

18.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

DME: Fully Distributed Approach (Cont.)DME: Fully Distributed Approach (Cont.)

� The decision whether process Pj replies immediately to a
request(Pi, TS) message or defers its reply is based on three
factors:

� If Pj is in its critical section, then it defers its reply to Pi

� If Pj does not want to enter its critical section, then it sends a
reply immediately to Pi

� If Pj wants to enter its critical section but has not yet entered it,
then it compares its own request timestamp with the timestamp
TS

� If its own request timestamp is greater than TS, then it
sends a reply immediately to Pi (Pi asked first)

� Otherwise, the reply is deferred

6

18.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Desirable Behavior of Fully Distributed ApproachDesirable Behavior of Fully Distributed Approach

� Freedom from Deadlock is ensured

� Freedom from starvation is ensured, since entry to the critical
section is scheduled according to the timestamp ordering

� The timestamp ordering ensures that processes are served in a
first-come, first served order

� The number of messages per critical-section entry is

2 x (n – 1)

This is the minimum number of required messages per critical-
section entry when processes act independently and concurrently

18.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Undesirable ConsequencesThree Undesirable Consequences

� The processes need to know the identity of all other processes in
the system, which makes the dynamic addition and removal of
processes more complex

� If one of the processes fails, then the entire scheme collapses

� This can be dealt with by continuously monitoring the state of
all the processes in the system

� Processes that have not entered their critical section must pause
frequently to assure other processes that they intend to enter the
critical section

� This protocol is therefore suited for small, stable sets of
cooperating processes

7

18.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Atomicity Atomicity

� Either all the operations associated with a program unit are
executed to completion, or none are performed

� Ensuring atomicity in a distributed system requires a transaction
coordinator, which is responsible for the following:

� Starting the execution of the transaction

� Breaking the transaction into a number of subtransactions, and
distribution these subtransactions to the appropriate sites for
execution

� Coordinating the termination of the transaction, which may
result in the transaction being committed at all sites or aborted
at all sites

18.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--Phase Commit Protocol (2PC)Phase Commit Protocol (2PC)

� Assumes fail-stop model

� Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached

� When the protocol is initiated, the transaction may still be executing
at some of the local sites

� The protocol involves all the local sites at which the transaction
executed

� Example: Let T be a transaction initiated at site Si and let the
transaction coordinator at Si be Ci

8

18.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 1: Obtaining a DecisionPhase 1: Obtaining a Decision

� Ci adds <prepare T> record to the log

� Ci sends <prepare T> message to all sites

� When a site receives a <prepare T> message, the transaction
manager determines if it can commit the transaction

� If no: add <no T> record to the log and respond to Ci with
<abort T>

� If yes:

� add <ready T> record to the log

� force all log records for T onto stable storage

� transaction manager sends <ready T> message to Ci

18.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 1 (Cont.)Phase 1 (Cont.)

� Coordinator collects responses

� All respond “ready”,
decision is commit

� At least one response is “abort”,
decision is abort

� At least one participant fails to respond within time out period,
decision is abort

9

18.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Phase 2: Recording Decision in the DatabasePhase 2: Recording Decision in the Database

� Coordinator adds a decision record

<abort T> or <commit T>

to its log and forces record onto stable storage

� Once that record reaches stable storage it is irrevocable (even if
failures occur)

� Coordinator sends a message to each participant informing it of the
decision (commit or abort)

� Participants take appropriate action locally

18.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Failure Handling in 2PC Failure Handling in 2PC –– Site FailureSite Failure

� The log contains a <commit T> record

� In this case, the site executes redo(T)

� The log contains an <abort T> record

� In this case, the site executes undo(T)

� The contains a <ready T> record; consult Ci

� If Ci is down, site sends query-status T message to the other
sites

� The log contains no control records concerning T

� In this case, the site executes undo(T)

10

18.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Failure Handling in 2PC Failure Handling in 2PC –– Coordinator Coordinator CCii FailureFailure

� If an active site contains a <commit T> record in its log, the T must
be committed

� If an active site contains an <abort T> record in its log, then T must
be aborted

� If some active site does not contain the record <ready T> in its log
then the failed coordinator Ci cannot have decided to
commit T

� Rather than wait for Ci to recover, it is preferable to abort T

� All active sites have a <ready T> record in their logs, but no
additional control records

� In this case we must wait for the coordinator to recover

� Blocking problem – T is blocked pending the recovery of site Si

