
1

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

� Background

� Demand Paging

� Process Creation

� Page Replacement

� Allocation of Frames

� Thrashing

� Demand Segmentation

� Operating System Examples

2

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

� Virtual memory – separation of user logical memory from physical
memory.

� Only part of the program needs to be in memory for execution.

� Logical address space can therefore be much larger than
physical address space.

� Allows address spaces to be shared by several processes.

� Allows for more efficient process creation.

� Virtual memory can be implemented via:

� Demand paging

� Demand segmentation

9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory

�

3

9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

VirtualVirtual--address Spaceaddress Space

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

4

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand PagingDemand Paging

� Bring a page into memory only when it is needed

� Less I/O needed

� Less memory needed

� Faster response

� More users

� Page is needed � reference to it

� invalid reference � abort

� not-in-memory � bring to memory

9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

5

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ValidValid--Invalid BitInvalid Bit

� With each page table entry a valid–invalid bit is associated
(1 � in-memory, 0 � not-in-memory)

� Initially valid–invalid but is set to 0 on all entries

� Example of a page table snapshot:

� During address translation, if valid–invalid bit in page table entry is 0 �
page fault

1
1
1
1
0

0
0

�

Frame # valid-invalid bit

page table

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Table When Some Pages Are Not in Main MemoryPage Table When Some Pages Are Not in Main Memory

6

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page FaultPage Fault

� If there is ever a reference to a page, first reference will trap to
OS � page fault

� OS looks at another table to decide:

� Invalid reference � abort.

� Just not in memory.

� Get empty frame.

� Swap page into frame.

� Reset tables, validation bit = 1.

� Restart instruction: Least Recently Used

� block move

� auto increment/decrement location

9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Steps in Handling a Page FaultSteps in Handling a Page Fault

7

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

What happens if there is no free frame?What happens if there is no free frame?

� Page replacement – find some page in memory, but not
really in use, swap it out

� algorithm

� performance – want an algorithm which will result in
minimum number of page faults

� Same page may be brought into memory several times

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Process CreationProcess Creation

� Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

8

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

CopyCopy--onon--WriteWrite

� Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

� COW allows more efficient process creation as only modified
pages are copied

� Free pages are allocated from a pool of zeroed-out pages

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page ReplacementPage Replacement

� Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

� Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk

� Page replacement completes separation between logical memory
and physical memory – large virtual memory can be provided on a
smaller physical memory

9

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page ReplacementPage Replacement

10

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Replacement AlgorithmsPage Replacement Algorithms

� Want lowest page-fault rate

� Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

� In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

11

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FirstFirst--InIn--FirstFirst--Out (FIFO) AlgorithmOut (FIFO) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� 3 frames (3 pages can be in memory at a time per process)

� 4 frames

� FIFO Replacement – Belady’s Anomaly

� more frames � more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FIFO Illustrating Belady’s AnomalyFIFO Illustrating Belady’s Anomaly

12

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Optimal AlgorithmOptimal Algorithm

� Replace page that will not be used for longest period of time

� 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� How do you know this?

� Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

� Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

� Counter implementation

� Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

� When a page needs to be changed, look at the counters to
determine which are to change

1

2

3

5

4

4 3

5

13

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Algorithm (Cont.)LRU Algorithm (Cont.)

� Stack implementation – keep a stack of page numbers in a double
link form:

� Page referenced:

� move it to the top

� requires 6 pointers to be changed

� No search for replacement

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

LRU Approximation AlgorithmsLRU Approximation Algorithms

� Reference bit
� With each page associate a bit, initially = 0

� When page is referenced bit set to 1

� Replace the one which is 0 (if one exists). We do not know
the order, however.

� Second chance
� Need reference bit

� Clock replacement

� If page to be replaced (in clock order) has reference bit = 1
then:

� set reference bit 0

� leave page in memory

� replace next page (in clock order), subject to same rules

14

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SecondSecond--Chance (clock) PageChance (clock) Page--Replacement AlgorithmReplacement Algorithm

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Counting AlgorithmsCounting Algorithms

� Keep a counter of the number of references that have been
made to each page

� LFU Algorithm: replaces page with smallest count

� MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to
be used

15

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocation of FramesAllocation of Frames

� Each process needs minimum number of pages

� Example: IBM 370 – 6 pages to handle SS MOVE instruction:

� instruction is 6 bytes, might span 2 pages

� 2 pages to handle from

� 2 pages to handle to

� Two major allocation schemes

� fixed allocation

� priority allocation

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Fixed AllocationFixed Allocation

� Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

� Proportional allocation – Allocate according to the size of process

m
S
s

pa

m

sS

ps

i
ii

i

ii

×==

=
�=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

≈×=

≈×=

=
=
=

a

a

s

s

m

i

16

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Priority AllocationPriority Allocation

� Use a proportional allocation scheme using priorities rather
than size

� If process Pi generates a page fault,

� select for replacement one of its frames

� select for replacement a frame from a process with
lower priority number

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Global vs. Local AllocationGlobal vs. Local Allocation

� Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

� Local replacement – each process selects from only its
own set of allocated frames

17

9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ThrashingThrashing

� If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

� low CPU utilization

� operating system thinks that it needs to increase the degree of
multiprogramming

� another process added to the system

� Thrashing ≡ a process is busy swapping pages in and out

9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Thrashing (Cont.)Thrashing (Cont.)

18

9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Demand Paging and Thrashing Demand Paging and Thrashing

� Why does demand paging work?
Locality model

� Process migrates from one locality to another

� Localities may overlap

� Why does thrashing occur?
Σ size of locality > total memory size

9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Locality In A MemoryLocality In A Memory--Reference PatternReference Pattern

19

9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

WorkingWorking--Set ModelSet Model

� ∆ ≡ working-set window ≡ a fixed number of page references
Example: 10,000 instruction

� WSSi (working set of Process Pi) =
total number of pages referenced in the most recent ∆ (varies
in time)

� if ∆ too small will not encompass entire locality

� if ∆ too large will encompass several localities

� if ∆ = ∞ � will encompass entire program

� D = Σ WSSi ≡ total demand frames

� if D > m � Thrashing

� Policy if D > m, then suspend one of the processes

9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

WorkingWorking--set modelset model

20

9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Keeping Track of the Working SetKeeping Track of the Working Set

� Approximate with interval timer + a reference bit

� Example: ∆ = 10,000

� Timer interrupts after every 5000 time units

� Keep in memory 2 bits for each page

� Whenever a timer interrupts copy and sets the values of all
reference bits to 0

� If one of the bits in memory = 1 � page in working set

� Why is this not completely accurate?

� Improvement = 10 bits and interrupt every 1000 time units

9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PagePage--Fault Frequency SchemeFault Frequency Scheme

� Establish “acceptable” page-fault rate

� If actual rate too low, process loses frame

� If actual rate too high, process gains frame

21

9.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MemoryMemory--Mapped FilesMapped Files

� Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory

� A file is initially read using demand paging. A page-sized portion of
the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

� Simplifies file access by treating file I/O through memory rather
than read() write() system calls

� Also allows several processes to map the same file allowing the
pages in memory to be shared

9.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory Mapped FilesMemory Mapped Files

22

9.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues Other Issues ---- PrepagingPrepaging

� Prepaging

� To reduce the large number of page faults that occurs at process
startup

� Prepage all or some of the pages a process will need, before
they are referenced

� But if prepaged pages are unused, I/O and memory was wasted

� Assume s pages are prepaged and � of the pages is used

� Is cost of s * � save pages faults > or < than the cost of
prepaging
s * (1- �) unnecessary pages?

�
� near zero � prepaging loses

9.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues Other Issues –– Page SizePage Size

� Page size selection must take into consideration:

� fragmentation

� table size

� I/O overhead

� locality

23

9.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues Other Issues –– TLB Reach TLB Reach

� TLB Reach - The amount of memory accessible from the TLB

� TLB Reach = (TLB Size) X (Page Size)

� Ideally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

� Increase the Page Size. This may lead to an increase in
fragmentation as not all applications require a large page size

� Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunity to use them without
an increase in fragmentation.

9.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues Other Issues –– Program StructureProgram Structure

� Program structure

� Int[128,128] data;

� Each row is stored in one page

� Program 1

for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

� Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

24

9.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Other Issues Other Issues –– I/O interlockI/O interlock

� I/O Interlock – Pages must sometimes be locked into
memory

� Consider I/O. Pages that are used for copying a file from
a device must be locked from being selected for eviction
by a page replacement algorithm.

9.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

25

End of Chapter 9End of Chapter 9

