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Lecture 1: Overview

• Course administration
– Overview
– Contents
– Schedule
– Assignments

• Introduction to System-on-Chip design
– Levels of abstraction
– System design flow
– Computational models
– System-level description languages
– Computation, communication, IP
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Course Administration

• Course web pages at
http://eee.uci.edu/06w/16196/

– Instructor information
– Course description and policies
– Objectives and outcomes
– Contents and schedule
– Resources and communication
– Assignments
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Introduction to SoC Design

• System-on-Chip (SoC) design
• Abstraction levels
• SoC design flow
• Computational models
• System-level description languages
• Computation vs. communication
• Intellectual Property (IP)
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System-on-Chip Design

• Embedded systems are everywhere…

• Deep sub-micron design enables
System-on-Chip (SoC)

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 6

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity
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Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!
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Abstraction Levels
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Abstraction Levels
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Top-Down SoC Design Flow
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Computational Models

• Models of Computation
– Formal, abstract description of a system
– Various degrees of

• supported features
• complexity
• expressive power

• Examples
– Evolution process from FSM to PSM

• Finite State Machine (FSM)
• FSM with Data (FSMD)
• Super-state FSMD
• ...
• Program State Machine (PSM)
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Computational Models

• Finite State Machine (FSM)
– Basic model for describing control
– States and state transitions

• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)
• Moore-type FSM (state-based)

S1 S2

S3

FSM model



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 7

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 13

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)

– Basic model for describing computation

– Directed graph
• Nodes: operations

• Arcs: dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)

– Combined model for control and computation
• FSMD = FSM + DFG

– Implementation: controller plus datapath

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)

– FSMD with complex, multi-cycle states
• States described by procedures in a programming language

SFSMD model

a = a + b;
c = c + d;

PS3

PS1 PS2PS2

PS3

PS1

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)

– FSM extended with hierarchy and concurrency
• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)
• Program State Machine (PSM)

– HCFSMD plus programming language
• States described by procedures

in a programming language

– Example: SpecC!

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model
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System-Level Description Languages

• Goals
– Executability

• Validation through simulation

– Synthesizability
• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts
• Minimality

– Simplicity
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System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

SpecCharts

Statecharts

HardwareC

Verilog

VHDL
Java

C++C
SpecC

not supported partially supported supported

• Requirements
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System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

– SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

– SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

– UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.
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System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

� SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

� SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

� UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 22

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

s2

s1

s3

P1 P2



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 12

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 23

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

• SpecC model

– Behaviors and channels
– Separation of computation and communication

– Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1
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Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

B2

v2

v1

v3

B1
C1
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Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

– Implementation model

• Channel disappears

• Communication inlined into behaviors
• Wires exposed

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3
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v2

v1

IP in wrapper

Intellectual Property (IP)

• Computation IP: Wrapper model
B

Synthesizable
behavior

IP
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Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper
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Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

• Protocol inlining with wrapper

B1

v2

v1 IP

before after

v2

v1 IP
B1
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Intellectual Property (IP)

• Computation IP: Adapter model
B

replacable
at any time

Synthesizable
behavior

T

Transducer

v2

v1
A

Adapter

IP

IP
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Intellectual Property (IP)

• Computation IP: Adapter model
T

v2

v1

IP
A

B

replacable
at any time

Synthesizable
behavior

Transducer Adapter IP

• Protocol inlining with adapter

B1

v2

v1

IP
A

before

B1

v2

v1

IP

after
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IP protocol channel in wrapper

C2

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel

v2

v1

v3

C1

IP
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Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel IP protocol channel in wrapper

v2

v1

v3

IP

• Protocol inlining with hierarchical channel

B1 B2

v2

v1

before

v2

v1

B1 B2

after

C1 C2
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Intellectual Property (IP)

• Incompatible busses: Transducer insertion
T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior
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Intellectual Property (IP)

• Incompatible busses: Transducer insertion

• Protocol inlining with transducer

T
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