
EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 1

EECS 298:
System-on-Chip Description and Modeling

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 2

Lecture 1: Overview

• Course administration
– Overview
– Contents
– Schedule
– Assignments

• Introduction to System-on-Chip design
– Levels of abstraction
– System design flow
– Computational models
– System-level description languages
– Computation, communication, IP



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 2

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 3

Course Administration

• Course web pages at
http://eee.uci.edu/06w/16196/

– Instructor information
– Course description and policies
– Objectives and outcomes
– Contents and schedule
– Resources and communication
– Assignments

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 4

Introduction to SoC Design

• System-on-Chip (SoC) design
• Abstraction levels
• SoC design flow
• Computational models
• System-level description languages
• Computation vs. communication
• Intellectual Property (IP)



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 3

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 5

System-on-Chip Design

• Embedded systems are everywhere…

• Deep sub-micron design enables
System-on-Chip (SoC)

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 6

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

System

Transistor

A
b

st
ra

ct
io

n

A
cc

u
ra

cy



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 4

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 7

System levelSystem levelSystem level
1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

Number of componentsLevel

Gate

RTL

Algorithm

Transistor

A
b

st
ra

ct
io

n

A
cc

u
ra

cy

Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 8

Abstraction Levels

TimingLow abstraction

High abstraction

Implementation Detail

Structure

physical layout

unstructured

Structure

real time

untimed

Timing



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 5

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 9

Abstraction Levels

Implementation
model

Communication
model

Architecture
model

Specification
model

Manufacturing

Product features

Structure

pure functional

transaction level

bus functional

RTL / IS

requirements

Timing

untimed

estimated timing

timing accurate

cycle accurate

constraints

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 10

Top-Down SoC Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 6

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 11

Computational Models

• Models of Computation
– Formal, abstract description of a system
– Various degrees of

• supported features
• complexity
• expressive power

• Examples
– Evolution process from FSM to PSM

• Finite State Machine (FSM)
• FSM with Data (FSMD)
• Super-state FSMD
• ...
• Program State Machine (PSM)

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 12

Computational Models

• Finite State Machine (FSM)
– Basic model for describing control
– States and state transitions

• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)
• Moore-type FSM (state-based)

S1 S2

S3

FSM model



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 7

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 13

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)

– Basic model for describing computation

– Directed graph
• Nodes: operations

• Arcs: dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 14

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)

– Combined model for control and computation
• FSMD = FSM + DFG

– Implementation: controller plus datapath

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 8

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 15

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)

– FSMD with complex, multi-cycle states
• States described by procedures in a programming language

SFSMD model

a = a + b;
c = c + d;

PS3

PS1 PS2PS2

PS3

PS1

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 16

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)

– FSM extended with hierarchy and concurrency
• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 9

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 17

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)
• Program State Machine (PSM)

– HCFSMD plus programming language
• States described by procedures

in a programming language

– Example: SpecC!

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 18

System-Level Description Languages

• Goals
– Executability

• Validation through simulation

– Synthesizability
• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts
• Minimality

– Simplicity



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 10

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 19

System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

SpecCharts

Statecharts

HardwareC

Verilog

VHDL
Java

C++C
SpecC

not supported partially supported supported

• Requirements

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 20

System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

– SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

– SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

– UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 11

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 21

System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

� SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

� SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

� UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 22

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

s2

s1

s3

P1 P2



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 12

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 23

Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

• SpecC model

– Behaviors and channels
– Separation of computation and communication

– Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 24

Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

B2

v2

v1

v3

B1
C1



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 13

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 25

Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

– Implementation model

• Channel disappears

• Communication inlined into behaviors
• Wires exposed

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 26

v2

v1

IP in wrapper

Intellectual Property (IP)

• Computation IP: Wrapper model
B

Synthesizable
behavior

IP



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 14

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 27

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 28

Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

• Protocol inlining with wrapper

B1

v2

v1 IP

before after

v2

v1 IP
B1



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 15

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 29

Intellectual Property (IP)

• Computation IP: Adapter model
B

replacable
at any time

Synthesizable
behavior

T

Transducer

v2

v1
A

Adapter

IP

IP

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 30

Intellectual Property (IP)

• Computation IP: Adapter model
T

v2

v1

IP
A

B

replacable
at any time

Synthesizable
behavior

Transducer Adapter IP

• Protocol inlining with adapter

B1

v2

v1

IP
A

before

B1

v2

v1

IP

after



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 16

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 31

IP protocol channel in wrapper

C2

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel

v2

v1

v3

C1

IP

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 32

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel IP protocol channel in wrapper

v2

v1

v3

IP

• Protocol inlining with hierarchical channel

B1 B2

v2

v1

before

v2

v1

B1 B2

after

C1 C2



EECS298: SoC Description and Modeling Lecture 1

(c) 2006 R. Doemer 17

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 33

Intellectual Property (IP)

• Incompatible busses: Transducer insertion
T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior

EECS298: SoC Description and Modeling, Lecture 1 (c) 2006 R. Doemer 34

Intellectual Property (IP)

• Incompatible busses: Transducer insertion

• Protocol inlining with transducer

T

v2

v1

v3

B1

v5

v4

IP
A

TB1

v5

v4

IP

v2

v1

v3

Transducer Adapter IPIP busSystem busSynthesizable
behavior

after


