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Lecture 4: Overview

» Execution and Simulation Semantics
— System-level Language Semantics
— Motivating Examples
— Simulation Semantics
— Formal Execution Semantics
 Homework Assignment 1
— Discussion
 Homework Assignment 2
— Tasks
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EECS298: SoC Description and Modeling

System-level Language Semantics

e Concepts found in Embedded Systems
— Behavioral and structural hierarchy
Concurrency
Synchronization and communication
Exception handling
Timing
State transitions
« System-level language must support these concepts

e Language semantics needed to define the meaning
Semantics of execution (modeling, simulation, synthesis)
Deterministic vs. non-deterministic behavior

Preemptive vs. non-preemptive concurrency

Atomic operations
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System-level Language Semantics

* Language semantics are needed for
— System designer (understanding)
— Tools
 Validation (compilation, simulation)
» Formal verification (equivalence, property checking)
« Synthesis
— Documentation and standardization
* Objective:
— Clearly define the execution semantics of the language
¢ Requirements and goals:
completeness

— precision (no ambiguities)
— abstraction (no implementation details)
— formality (enable formal reasoning)
— simplicity (easy understanding)
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System-level Language Semantics

» Example: SpecC language

— Documentation
» Language Reference Manual (LRM)
= set of rules written in English (not formal)
 Abstract simulation algorithm
= set of valid implementations (not general)

— Reference implementation
» SpecC Reference Compiler and Simulator
= one instance of a valid implementation (not general)
« Compliance test bench
= set of specific test cases (incomplete)

— Formal execution semantics
e Time-interval formalism
= rule-based formalism (incomplete)
» Abstract State Machines
= fully formal approach (not easy to understand)
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Execution and Simulation Semantics

» Motivating Example 1

— Given:
behavi or B1(int x) behavi or B2(int x) behavi or B
{
voi d mai n(voi d) voi d nai n(voi d) int x;
{ { Bl b1(x);
X = 5; X = 6; B2 b2(x);
} }
6 s voi d mai n(voi d)
bl; b2;
}
e

— What is the value of x after the execution of B?
— Answer: X =6
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Execution and Simulation Semantics

* Motivating Example 2

— Given:
behavi or B1(int Xx) behavi or B2(int Xx) behavi or B
{ { {
voi d mai n(voi d) voi d nai n(voi d) int x;
{ { Bl bl(x);
X = 5; X = 6; B2 b2(x);
} }
s }s voi d mai n(voi d)
par{bl; b2;}
}
}i

— What is the value of x after the execution of B?

— Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)
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Execution and Simulation Semantics

» Motivating Example 3

— Given:
behavi or B1(int Xx) behavi or B2(int Xx) behavi or B
{
voi d mai n(voi d) voi d nai n(voi d) int x;
{ Bl bl(x);
wai tfor 10; X = 6; B2 b2(x);
x = 5; }
} s voi d mai n(voi d)
e
par{bl; b2;}
}
}i

— What is the value of x after the execution of B?
— Answer: x=5
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* Motivating Example 4

Execution and Simulation Semantics

— Given:
behavi or B1(int x) behavi or B2(int x) behavi or B
{
voi d mai n(voi d) voi d nai n(voi d) int x;
{ { Bl bl(x);
wai tfor 10; wai tfor 10; B2 b2(x);
x = 5; X = 6;
} } voi d mai n(voi d)
}i }
par{bl; b2;}
}
e

— What is the value of x after the execution of B?

— Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)
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Execution and Simulation Semantics

» Motivating Example 5
— Given:

behavi or B1( behavi or B2( behavi or B
int x, event e) int x, event e) {
{ { int x;
voi d mai n(voi d) voi d nai n(voi d) event e;
{ { Bl bil(x,e);
X = 5; wait e; B2 b2(x,e);
notify e; X = 6;
} } voi d mai n(voi d)
e }
par{bl; b2;}
}
}i

— What is the value of x after the execution of B?
— Answer: X =6
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Execution and Simulation Semantics

* Motivating Example 6

— Given:
behavi or B1( behavi or B2( behavi or B
int x, event e) int x, event e) {
{ { int x;
voi d mai n(voi d) voi d nai n(voi d) event e;
{ { Bl bl(x,e);
notify e; wait e; B2 b2(x,e);
x = 5; X = 6;
} } voi d mai n(voi d)
}; }
par{bl; b2;}
}
e

— What is the value of x after the execution of B?
— Answer: X =6
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Execution and Simulation Semantics

» Motivating Example 7

— Given:
behavi or B1( behavi or B2( behavi or B
int x, event e) int x, event e) {
{ { int x;
voi d mai n(voi d) voi d nai n(voi d) event e;
{ { Bl bil(x,e);
wai tfor 10; wait e; B2 b2(x,e);
X = 5; X = 6;
notify e; } voi d mai n(voi d)
} I {
}; par{bl; b2;}
}
}i

— What is the value of x after the execution of B?
— Answer: X =6

EECS298: SoC Description and Modeling, Lecture 4 (c) 2006 R. Doemer 12

(c) 2006 R. Doemer

Lecture 4



EECS298: SoC Description and Modeling

Execution and Simulation Semantics

* Motivating Example 8

— Given:
behavi or B1( behavi or B2( behavi or B
int x, event e) int x, event e) {
{ { int x;
voi d mai n(voi d) voi d nai n(voi d) event e;
{ { Bl bl(x,e);
X = 5; wai tfor 10; B2 b2(x,e);
notify e; wait e;
} X = 6; voi d mai n(voi d)
}i } {
I par{bl; b2;}
}
s

— What is the value of x after the execution of B?

— Answer: B never terminates!
(the event is lost)
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Simulation Semantics

* Abstract Simulation Algorithm for SpecC
— available in LRM (appendix), good for understanding
= set of valid implementations
= not general (possibly incomplete)

» Definitions:
— At any time, each thread t is in one of the following sets:
* READY: set of threads ready to execute (initially root thread)
* WAIT: set of threads suspended by wai t (initially &)
* WAITFOR: set of threads suspended by wai t f or (initially @)
— Notified events are stored in a set N
e notify el addseventeltoN
e wait el willwakeup whenelisinN
« Consumption of event e means event e is taken out of N
» Expiration of notified events means N is set to &
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Simulation Semantics

e Abstract Simulation Algorithm for SpecC
Select thread tOREADY, execute t b

Add notified events to N
Move tOREADY to WAIT
Move t[OREADY to WAITFOR

¢ NO
lﬂﬁ

YES

l Move all tOWAIT waiting *for events elN to READY |
l Set N=0 |

—RERDYp

YES
[Update simulation time, move earliest tOWAITFOR to READY ]
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Simulation Semantics

* Abstract Simulation Algorithm for SpecC
— Discrete Event Simulation
« utilizes delta-cycle mechanism
* matches execution semantics of other languages
— SystemC
— VHDL
— Verilog
— Features
« clearly specifies the simulation semantics
« easily understandable
e can easily be implemented
— Generality
* is one valid implementation of the semantics
« other valid implementations may exist as well
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EECS298: SoC Description and Modeling

Formal Execution Semantics

 Two examples of semantics definition:

1) Time-interval formalism
» formal definition of timed execution semantics
e sequentiality, concurrency, synchronization
« allows reasoning over execution order, dependencies

2) Abstract State Machines
» complete execution semantics of SpecC V1.0
« wait, notify, notifyone, par, pipe, traps, interrupts
« operational semantics (no data types!)
« influence on the definition of SpecC V2.0
» straightforward extension for SpecC V2.0

« comparable to ASM specifications of SystemC and
VHDL 93
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Formal Execution Semantics

e Time-interval formalism

— Definition of execution semantics of SpecC 2.0
» sequential execution
« concurrent execution (semantics of par)
 synchronization (semantics of noti fy,wait)

— Sequential execution

Tstart(B1) <= Tstart(a) < Tend(a) <=

behavi or Bl
{ void main(void) Tstart(b) < Tend(b) <=
{ a Tstart(c) < Tend(c) <= Tend(B1)
b.
! < = |
ci ) B

}

time
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Formal Execution Semantics

* Time-interval formalism

— Sequential execution
* waitfor rule:
— only waitfor increases simulation time
— other statements execute in zero simulation time

behavi or B 0 <= Tstart(a) <Tend(@a) < 1
{ void main(void) 0 <= Tstart(w) < Tend(w) = 10
{ a 10 <= Tstart(b) < Tend(b) < 11
wai t for 10;
b;
}
; 4 e
t=0 t=1 t=10 t=11 time
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Formal Execution Semantics

e Time-interval formalism

_ : Preemptive or non-preemptive scheduling:
Concurrent execution No atomicity guaranteed!

Tstart(B) <= Tstart(a) < Tend(a) <=

behavi or B

{ void main(void) Tstart(b) < Tend(b) <=
{ par{ bl; b2;} Tstart(c) < Tend(c) <= Tend(B)
}_} Tstart(B) <= Tstart(d) < Tend(d) <=
- Tstart(e) < Tend(e) <=
behavi or B1 Tstart(f) < Tend(f) <= Tend(B)
{ void main(void)

Possible Schedule

{ a by c }

b L — Ve
1B ]

behavi or B2
{ void main(void)

{d e f;}
e

time
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EECS298: SoC Description and Modeling

Formal Execution Semantics

Time-interval formalism
— Atomicity
 Since there is no atomicity guaranteed, a safe mechanism
for mutual exclusion is necessary
e SpecC 2.0:
— A mutex is implicitly contained in each channel instance

— Each channel method implicitly acquires the mutex when it
starts execution and releases the mutex again when it finishes

— An acquired mutex is also released at wai t and wai t f or
statements and will be re-acquired before execution resumes
» This easily enables safe communication without
unnecessary restrictions to the implementation!
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Formal Execution Semantics

e Time-interval formalism
— Synchronization

behavi or B Tstart(B) <= Tstart(a) < Tend(a) <=
{ void nain(void) Tstart(w) < Tend(w) <=
§ par{ bl; b2} Tstart(b) < Tend(b) <= Tend(B)
} Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
behavi or B1 Tstart(d) < Tend(d) <= Tend(B)
{ void nain(void)
.{ a vait e % 5 Tend(w) >= Tend(n)

h

behavi or B2 ap b |—

{ void nain(void)

};{ c, notify e; d; } @ @

time
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EECS298: SoC Description and Modeling

Formal Execution Semantics

» Abstract State Machine (ASM)
— aka. Evolving Algebras (Y. Gurevich, 1987)
— ASM semantics already exist for
* Prolog, Concurrent Prolog
e C, C++, Java
+ VHDL, VHDL-AMS, SystemC
— ASM semantics for SpecC published at ISSS’02

* ASM components
— Sequence of algebras (functions over domains):
states

— Rules define updates of functions:
state transitions
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Abstract State Machine (ASM)

Algebra A Algebra A’
g = 0 g = 0
f(0) = undef f(0) = 42
f(0,0) = 23 f(0,0)=0
f(0,1) = 6 f0D)=6
Rules Rules
if f(0) = undef i =
then f(0) := 42 Update Set I{fhfe(g)f(_O)u . s
else f(0) := 77 X else f(0) := 77 ~ 3
f(0) := 42 I A
if f(0,0) = 0 f(0,0) := 0 i = g
N .« f(O, if f(0,0) = 0 o
then f(0,0) := 23 / then (0,0) := 23 —> &
else (0,0) =0 else f(0,0):=0 >
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EECS298: SoC Description and Modeling

ASM: SpecC Kernel Semantics

¢ Phase 1: at least one BEHAVIOR is running
e Phase 2: all BEHAVIORs are not running

—{ ExecuteBehaviors %—
i
’ ProcessEvents ‘
) Check/ResetEvents ‘
if events
if no events
exit 4—( AdvanceTime ‘
i
’ ProcessTimeouts }—
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ASM: SpecC Behavior Semantics

p [ BEHAVIOR:
status(p) O {running, waiting, interrupted, completed}

last stmt
(. completed
event

timeout iy

join
interrupt
last stmt

* modelling execution of statements of behavior “Self”
Self executes <statement> =
programCounter(Self) = <statement> [ status (Self) = running
e wait statement
if Self executes <wait(EventList)>
then status(Self) := waiting,
sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)
endif;

wait
waitfor
fork

waiting
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EECS298: SoC Description and Modeling

ASM: SpecC Statement Semantics

« modelling execution of statements of behavior “Self”
Self executes <statement> =
programCounter(Self) = <statement> O status (Self) = running
e wait statement
if Self executes <wait(EventList)>
then status(Self) := waiting,
sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)
endif;
* notify statement
if Self executes <notify(EventList)>
then O e O EventList: notified(e) := true,

programCounter(Self) := nextStmt(Self)
endif;

e The simulation kernel sets each behavior to
status(b):= running if Ce: notified(e) = true O e O sensitivity (b)
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ASM: SpecC Summary

* Formal Semantics of SpecC Execution
< complete execution semantics of SpecC V1.0 by ASMs
« wait, notify, notifyone, par, pipe, traps, interrupts
« operational semantics (no data types!)
* can be easily extended to V2.0
« influenced the definition of SpecC V2.0

» SpecC ASM specification is comparable to
other ASM specifications

e SystemC
* VHDL 93
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EECS298: SoC Description and Modeling

Homework Assignment 1: Discussion

e Administration

— Server
e epsil on. eecs. uci . edu
« Intel Pentium CPU, 3.0 GHz, 1GB RAM
¢ RedHat Linux (Fedora Core 4)
« Access via secure shell protocol (ssh)
— Accounts
¢ User ID same as your UCI net ID
« Password as discussed in class
— Software (© by CECS, UCI)

e SpecC Compiler and Simulator
— / opt/ scel/ bi n/ setup. csh

» System-on-Chip Environment
— /opt/ sce-20041007/ bi n/ set up. csh
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Homework Assignment 1: Discussion

e Task 1

— Make yourself familiar with the SpecC compiler

* Use scc to compile and simulate the examples found in
/ opt/ sce-20041007/ exanpl es/ si npl e/

e Task 2

— Make yourself familiar with the SoC Environment

 Follow the initial steps of the SCE tutorial found in
[ opt/ sce-20041007/ doc/ SCE_Tut ori al /
sce-tutorial . pdf

» Deliverables
— none (but be prepared for the next assignment)

* Due
— next week (Week 4)
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Homework Assignment 2

* Project

— Elevator Control System (ECS)
« Distributed embedded system
« Set of communicating Elevator Control Units (ECU)

» Tasks for System Specification
— Decompose ECS into multiple ECUs
— Develop a specification model for each ECU
— Validate each ECU model using simulation
— Compose entire ECS using developed ECUs
— Validate entire ECS
— Then, refine and implement ECS...
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Homework Assignment 2

e Decomposition of ECS
Floor panel
« panel at each floor and each shaft with up/down controls
— Floor display
« display of current floor and direction at each floor
— Floor door
« Control unit to open/close doors at each floor
— Car panel
« panel in each car with request controls
— Car display
« display of current floor and direction in each car
— Car door
< Control unit to open/close doors in each car
— Main control unit
« central control unit to control the entire ECS
— Motor control unit
« control unit for the motor atop each shaft
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Homework Assignment 2

e Deliverables

— Specification document for one ECU
« lllustration figure
» Schematic view of ECU SoC with ports
« Brief (!) description of functionality (in English)

— Executable specification model for one ECU
embedded in proper test bench (using SpecC)

— Successful simulation run

e Due
— Week 5 (next week)
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