EECS10: Computational Methods in ECE

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 21

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 21: Overview

e Course Administration
— Final course evaluation

« Data Structures
— Memory organization
— Objects in memory

— Pointers
* Pointer definition
* Pointer operators
» Pointer dereferencing

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer

(c) 2007 R. Doemer

Lecture 21

EECS10: Computational Methods in ECE Lecture 21

Course Administration

» Final Course Evaluation
— Open until end of 10" week
— Nov. 26, 2007, 12pm - Dec. 9, 2007, 11:45pm
— Online via EEE Evaluation application
« Mandatory Evaluation of Course and Instructor
— Voluntary
— Anonymous
— Very valuable

« Help to improve this class!
» Please spend 5 minutes!

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 3

Memory Organization

« Memory Segmentation bfff fifc

— typical (virtual) memory layout rrErerTasTes
on processor with 4-byte words (KD (D
and 1 GB of memory Stack

— Stack

» grows and shrinks dynamically
« function call hierarchy

+ stack frames with local variables Heap
— Heap
« “free ;torage . Data
+ dynamic allocation by the user segment
— Data segment
 global (and static) variables Program
— Program segment SEEITEE
 stores binary program cgde e ——
— Reserved area for operating system 0 for OS
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 4

(c) 2007 R. Doemer 2

EECS10: Computational Methods in ECE

Memory Organization

; bfff fffc
* Memory Segmentation CELE] (L0 (T (7
— typical (virtual) memory layout rrTarsrrjannas
on processor with 4-byte words (KD (e
and 1 GB of memory Stack
 Memory errors
— Out of memory
» Stack and heap collide
— Segmentation fault Heap
« access outside allocated segments
* e.g. access to segment reserved for OS Data
— Bus error segment
* mis-aligned word access
Program
* e.g. word access to an address segment
that is not divisible by 4 9
Reserved
0 for OS
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 5

Objects in Memory

» Data in memory is organized as a set of objects
» Every object has ...

— ...atype (e.g. i nt,doubl e, char[5])
* type is known to the compiler at compile time
— ...avalue (e.0.42,3.1415,“text")
« value is used for computation of expressions
— ..asize (number of bytes in the memory)
e in C, the si zeof operator returns the size of a variable or type
— ... alocation (address in the memory)

« in C, the “address-of” operator (&) returns the address of an object

e Variables ...
— ... serve as identifiers for objects
— ... are bound to objects
— ... give objects a name

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 6

(c) 2007 R. Doemer

Lecture 21

EECS10: Computational Methods in ECE Lecture 21

Objects in Memory

« Example: Variable values, addresses, and sizes

int x = 42;

int y = 13;

char s[] = "Hello World!";

printf("Value of x is %d.\n", x);
printf("Address of x is %.\n", &);
printf("Size of x is %.\n", sizeof(x));
printf("Value of y is %d.\n", y);
printf("Address of y is %.\n", &);
printf("Size of y is %.\n", sizeof(y));
printf("Value of s is %.\n", s);
printf("Address of s is %.\n", &s);
printf("Size of s is %.\n", sizeof(s));

printf("Value of s[1] is %.\n", s[1]);
printf("Address of s[1] is %.\n", &s[1]);
printf("Size of s[1] is %.\n", sizeof(s[1]));

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 7

Objects in Memory

» Example: Variable values, addresses, and sizes

int x = 42;

int y = 13;

char s[] = "Hello World!'";

Stack

Val ue of x is 42.

Address of x is ffbefadc. ff bef a48
Si ze of x is 4.

Value of vy is 13. ffbefad44 @

Address of vy is ffbefa48.

Si ze of y is 4. ffbefadO || r" ‘" d ‘1"’
Val ue of s is Hello World!. P —
Address of s is ffbefa38. ffbefa3c
Si ze of s is 13. Y
Value of s[1] is e ffbefa3d8||H ‘e’ ‘|’ ‘1|

Address of s[1] is ffbefa39.

Si ze of s[1] is 1.

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 8

(c) 2007 R. Doemer 4

EECS10: Computational Methods in ECE

Pointers

« Pointers are variables whose values are addresses
— The “address-of” operator (&) returns a pointer!

* Pointer Definition
— The unary * operator indicates a pointer type in a definition

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

« Pointer initialization or assignment

— A pointer may be set to the “address-of” another variable
’p = &X; /* p points to x */

— A pointer may be set to 0 (points to no object)
’p = 0; /* p points to no object */ ‘

— A pointer may be set to NULL (points to “NULL" object)
#include <stdio.h> /* defines NULL as 0 */

p = NULL; /* p points to no object */
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 9

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)

#i ncl ude <stdi o. h>
int x = 42; /* regul ar integer variable */
int *p = NULL; /* pointer to an integer */
p X
0 [42 |
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 10

(c) 2007 R. Doemer

Lecture 21

EECS10: Computational Methods in ECE

Pointers

* Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)

#i ncl ude <stdi o. h>
int x = 42; /* regul ar integer variable */
int *p = NULL; /* pointer to an integer */
p = &; /* make p point to x */
P X
| ° | > 42
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 11

» Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)

#i ncl ude <stdi o. h>

int x = 42; /* regul ar integer variable */
int *p = NULL; /* pointer to an integer */
p = &; /* make p point to x */

printf(“x is %, content of pis %\n", x, *p)

X is 42, content of pis 42

p X
L — 42 |
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer

12

(c) 2007 R. Doemer

Lecture 21

EECS10: Computational Methods in ECE

Pointers

* Pointer Dereferencing

— The unary * operator dereferences a pointer
to the value it points to (“content-of” operator)
#i ncl ude <stdio. h>

int x = 42; /* regul ar integer variable */
int *p = NULL; /* pointer to an integer */
p = &; /* make p point to x */

printf(“x is %, content of pis %\n", x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %, content of pis %\n”, x, *p);

x is 42, content of pis 42
x is 84, content of pis 84

P X
| o | > 84
EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 13
Pointers

» Pointer Dereferencing
— The - > operator dereferences a pointer to a structure
to the content of a structure member

struct Student p
{ int 1D °
char Name[40] ; ’
char G ade;
)] Jane
struct Student Jane = ID 1001

{1001, “Jane Doe”, ‘A'};

struct Student *p = &Jane;

Nare [Jane Doe”

‘)

voi d Pri nt St udent (voi d) Grade A

{
printf(“lD %\ n", p->I1D;
printf(“Name: 9%\n”, p->Nane); I'D: 1001
printf(“Gade: %\n", p->Gade); Name: Jane Doe

} G ade: A

EECS10: Computational Methods in ECE, Lecture 21 (c) 2007 R. Doemer 14

(c) 2007 R. Doemer

Lecture 21

