EECS 10: Assignment 5

October 26, 2007

Due Monday 11/5/2007 12:00pm

1 Roulette[20 points]|

Write a program to simulate the casino game Roulette. We will use a simplified version of roulette. We will only use
numbers from 0 to 36 (00 is excluded). Further, the user is only allowed to bet on odd or even numbers.

At the start, your program will prompt the user to enter the money she/he has (balance) and the betting type: 1-Even
number, 2-Odd number, 0 to quit the game. Then your program will prompt for the betting amount.

Following this, your program will generate a random number between 0 and 36 (including 0 and 36). Depending on
the betting type chosen by the user, the program will check the generated number for even or odd number. If won, the
user gets the betting amount which will be added to the balance. If lost, the user will lose the betting amount which
will be deducted from the balance.

Aslong as the user has some balance, the program will repeat prompting the user for the next betting. Y our program
will quit if the user loses all the money (i.e. balanceis 0), or when the user enters O when prompted for the betting type.
When run, your program should look as follows:

Entering the casino, how nuch nbney do you have? $100
We are playing Roulette, odd or even bets only.
Pl ace your bet!

Enter 1 for odd, 2 for even, O to quit: 1

How much noney you want to bet? $20

You bet $20.00 on odd numbers.

The wi nning nunber is 23!

You W n!

Your bal ance is $120.00!!

Pl ace your bet!

Enter 1 for odd, 2 for even, O to quit: 2

How much noney you want to bet? $100

You bet $100.00 on even numbers.

The wi nni ng nunber is 29!

You Lose!

Your bal ance is $20. 00!

Pl ace your bet!

Enter 1 for odd, 2 for even, 0 to quit: O

You exit the casino with $20.00

What to turnin:

Y ou should submit your program code asfiler oul et t e. ¢, atext filer oul ett e. t xt briefly explaining
how you designed your program, and atypescript r oul et t e. scri pt which shows that you compile your
program and run it for 5 bets.

HINT

For generating the random number, you have to use a random number generator which is provided by the C standard
function r and() . This function generates a random number of typei nt inthe range of 0 to 32767. This function
isprovided in the header filest dl i b. h.

In practice, no computer functions can produce truly random data -- they only produce pseudo-random numbers.
These are computed from a formula and the number sequences they produce are repeatable. A seed value is usually
used by the random number generator to generate a number. Therefore, if you use the same seed value al the time,
the same sequence of “random” numbers will be generated (i.e. your program will always produce the same
“random” number in every program run). To avoid this, we can use the current time of the day to set the random
seed, as this will always be changing with every program run. With this trick, your program will produce different
guesses every time you run it.

To set the seed value, you have to use the function sr and() , which is aso provided by header filest dl i b. h .
For the current time of the day, you can use the function ti me(), which is defined in header file ti me. h
(stdlib.hand tine.h areheader filesjust likethe st di 0. h file that we have been using so far).

In summary, use the following code fragments to generate the random number for the game:
1. Includethestdl i b. hand ti me. h header files at the beginning of your program:

#i ncl ude <stdlib. h>
#i ncl ude <tine. h>

2. Include the following lines at the beginning of your main function:

/* initialize the random nunber generator with the current tinme */
srand(tinme(0));

3. In your program, use the following to generate the random number:
/* generate the random nunber in the range 0 to 36 */
randomNunber = rand() % 37;

Here, r andomNunber istheinteger variable which is assigned the generated random number.

2 Squar e root approximation [20 points + 5 points (extra credit)]

Write a program to cal culate the square root of any positive floating-point value.
At the beginning, the program should ask the user to input a positive number N in the range between 0 and 10000.

Pl ease input a positive nunber (1 to 10000):

We will use a binary search approximation technique for this assignment. In particular, the program will aways
keep arange of aleft bound L and aright bound R, where the actual square root S lies somewhere between L and R:
L<S<R
Consequently, it followsthat L*L < N=S*S < R*R Thus, to find S, we can compare L* L or R* Rwith N. The
binary approximation then works as follows. First, we compute a value Mthat lies in the middle between the left
bound L and the right bound R M = L+(R-L)/2. Then, if MM is less than N, the square root obviously lies
somewhere in the right half of the current range (i.e. within Mto R), otherwise in the left half of the current range (i.e.
within L to M). The program then can use the proper half of the range as the new range and repeat the whole process.
With each iteration, the search range is effectively reduced to half its previous size. Because of this, this technique is
called binary search.
To start the search, we will use the range from 0 to N (which is guaranteed to contain the square root of N). We will
stop the iteration, once we have reached a range that is smaller than 0. 0000000001 so that we reach a precision
of 10 digits after the decimal point for our approximation. (HINT: We will need long double variables for all
variablesin order to achieve this precision.)

The pseudo-code of the algorithm can be written as follows:

Start with arange of 0to N

As long as the range is not accurate enough, repeat the following steps:
Compute the middle of the range
Compare the square of the middle value with N

If the middle value is less than the square root
Use middle-to-right as the new range
Otherwise
Use left-to-middle as the new range
Output the middle of the latest range as result

For example, to compute the square root of 10, the program will start with 5, which is in the middle between 0 and
10. Since 5*5=25 is larger than 10, the program will try the middle number 2.5 of left bound (0 to 5). Thus, the
program compares 2.5*2.5 with 10. Because the result 6.25 is smaller than 10, it will pick 3.75 (the middle number
of 2.5 and 5) as the next guess. By picking the middle number every time and comparing its square with the original
number, the program gets closer to the actual square root.

To demonstrate the approximation procedure, your program should print the approximated square root in each
iteration, as follows:

Pl ease input a positive nunmber (1 to 10000): 42

Pl ease input a positive nunber (1 to 10000): 42

Iteration 1: the square root of 42.0000000000 is approximtely 21. 0000000000
Iteration 2: the square root of 42.0000000000 is approximtely 10.5000000000
Iteration 3: the square root of 42.0000000000 is approximtely 5.2500000000

I[teration 39: the square root of 42.0000000000 is approximtely 6.4807406985

Note that your program should run properly for any real number between 1.0 and 10000.0 (not only for the demo
value 42).

What to turnin:

Y ou should submit your program code asfileroot.c, atext file root.txt briefly explaining how you designed
your program, and a typescript root.script which shows that you compile your program and run it using the 42
asinput.

For 5 extra credits:
Improve your program so that it can calculate the n-th root of any value. The value n should be a positive integer
input by the user.

For example:

Pl ease input a positive nunber (1 to 10000): 42

Pl ease input the value of integer n (n>0): 5

Iteration 1. the 5th root of 42.0000000000 is approximately 21. 0000000000
Iteration 2: the 5th root of 42.0000000000 is approximately 10.5000000000
Iteration 3: the 5th root of 42.0000000000 is approximtely 5.2500000000

iférati on 39: the 5th root of 42.0000000000 is approximtely 2.1117857650

To submit, use the same files as in Part 2, i.e. root.c, root.txt, and root.script. The script file should show the
output of your program when the user inputs 42 and n=5.

3 Submission

Submission for the files will be similar to last week’s assignment. Create a directory called hw5. Put all the
files for assignment 5 in that directory and run the /ecelib/bin/tur nin command to submit your homework.

