
EECS 222A
System-on-Chip Description and Modeling

Fall 2007

Assignment 4

Posted: November 2, 2007 (week 6)
Due: November 9, 2007 (week 7)

Task: Creating Behaviors in C Code

Instructions: (by Pramod Chandraiah)

As you might know by this time, behaviors in SpecC act as a basic unit of
computation. Because of their explicit syntax, compared to functions and plain C
statements, the analysis and the refinement tools can easily analyze and conduct
refinement tasks, such as partitioning and mapping.
In this document, we briefly describe how to encapsulate functions and C
statements into behaviors, followed by precise directions to create behaviors in
an MP3 decoder example.

Encapsulating Functions in Behaviors

The explicit port list that defines the interface of the behaviors is what makes
behaviors easily analyzable. As shown in the figure above, encapsulating a
function into a behavior involves creating a behavior body, creating the instance
of the newly created behavior and replacing the function call with the call to the
instance. Note that, creating the behavior body requires first determining the port
list. Creating the instance requires first creating the port map list.

(a) Original model (Model 1) (b) Function encapsulated in behavior (Model 2)

1. behavior B_f1(in int w, in int x[10], in int i, inout int s, out int c) {
2. void main()
3. { c= func(w, x[i], &s);
4. }
5. int f1(int w, int x, int *p)
6. { *p = w+x+*p;
7. return *p;
8. }
9. };
10. behavior B (in int p1, in int p2, out int result) {
11. int a, b[10], i1, s;
12. //Instantiate child behavior here
13. I_B_f 1(a, b, i1, s, result);
14. void main()
15. {
16. int *pa;
17. a = p1+p2;
18. s = p1-p2;
19. pa = &s;
20. …..
21. I_ B_f.main();
22. …..
23. }
24. } ;

1. behavior B (in int p1, in int p2, out int result)
2. {
3. void main()
4. {
5. int i1, a, b[10], s, *pa;
6. a = p1+p2;
7. s = p1-p2;
8. pa = &s;
9. …..
10. result = f1(a, b[i1], pa);
11. …..
12. }
13. int f1(int w, int x, int *p)
14. { *p = w+x+*p;
15. return *p;
16. }
17. };

Initial Setup
The initial setup files are in the tar file /home/doemer/EECS222A_F07/mp3_v1. t ar . gz.
Untar this file using the command:
gt ar xvzf mp3_v1. t ar . gz
A directory by name mp3_v1 will be created. Change into this directory
cd mp3_v1
The entire MP3 source code is in single file mp3decoder . sc . There is a Makef i l e to compile and test
the decoder for a set of MP3 streams. There are two directories r ef er ence/ and t est St r eam/ which
you don’ t have to worry about at this stage.

You need to set the path for the SpecC compiler. Source the setup shell script as below:
sour ce / opt / sce- 20060301/ bi n/ set up. csh
Now compile and test the decoder by running following commands
make cl ean
make
make t est
The setup should compile and simulate without errors. Please just ignore any " Can' t s t ep back" and
"r ead l engt h l ess t han max" messages.

Given MP3 Code
The MP3 code is a basic SpecC code. It has 4 behaviors: Stimulus [at line 5724], Monitor [at line 5692],
DUT [at line 5640] and MP3Decoder [at line 2755]. Use text editor to view the source code and find these
behaviors.

We want to introduce more behaviors in MP3Decoder to enable exploration. In the next section, we
describe the changes you have to do to convert a function call into a behavior. Note that the line numbers
we refer to are the unmodified lines in the original source file.

Task 1: Encapsulate decodeMP3 function call in behavior MP3Decoder.

1. We will give a set of instructions to convert a function to behavior. We would also like to
measure the time it takes to perform this conversion.
Please make a note of the start time T0.

2. decodeMP3() is a function in behavior MP3Decoder . The global function is defined at line
2873 and is declared at 2724. There are 2 calls to this function, first call at line 2778 and second at
line 2792. For this exercise, we are only interested in encapsulating the function call at line 2778.

3. First we have to create the behavior body. Create a new empty behavior (say at line 2754) with
the signature:

behavi or B_decodeMP3(
 i n st r uct mpst r * mp,
 i n char * i nput ,
 i n i nt i s i ze,
 i n char * out put ,
 i n i nt osi ze,
 i nout i nt * done,
 out i nt r et _por t) {

} ;

 Note that this signature can be derived from the function signature. You could copy the function
signature of decodeMP3 and modify it, or copy this signature from this document directly, or else
just type it.

4. Copy the global function decodeMP3() into behavior B_decodeMP3 (retain the global function,
don’ t delete it).

5. In the behavior B_decodeMP3 create an empty main function voi d mai n (voi d) { }
6. Add this function call in the empty main function

r et _por t = decodeMP3(mp, i nput , i s i ze, out put , osi ze, done) ;
7. Save the file and do: make and make t est and check if the tests run fine.
8. Note the time T1.

9. Now we have to create the instance of this newly created behavior in the parent behavior. First,

create new temporary variables in the scope of behavior MP3Decoder. We explain later the need
for these variables.

 s t r uct mpst r * t _dummy;
 char * t _dummy_0;
 char * t _dummy_1;
 i nt * t _dummy_2;

10. Create an instance of the new behavior in the parent behavior MP3Decoder before the main body.

B_decodeMP3 I_B_decodeMP3 (t _dummy, t _dummy_0, l en, t _dummy_1, (8192) ,
t _dummy_2, r et) ;
The portmap needed for creating the instance is obtained from the function call. The function call
is: r et = decodeMP3(&mp, buf , l en, out put , 8192, &si ze) ;
Since the portmaps can only be variables (not expressions), temporary variables are used to store
the argument expressions. So, before we make a call to the instance, we need to initialize these
temporary variables with the argument expressions.

11. Replace the first call to function decodeMP3() in the behavior MP3Decoder with the call to
the instance

I _B_decodeMP3. mai n()
12. Add following assignment statements to initialize the temporary variables in the behavior

MP3Decoder before the call to the instance.
 t _dummy = ∓
 t _dummy_0 = buf ;
 t _dummy_1 = out put ;
 t _dummy_2 = &si ze;

13. Save the file and do: make and make t est and check if the tests run fine.
14. Make a note of the time T2

Task 2: Encapsulate do_layer3 function call in behavior B_decodeMP3

1. For performing this task, unlike the previous case, we will not give the detailed directions. We will

briefly outline the steps needed. You will use the source file resulting from the changes done in the
previous step.
Please make a note of the start time T3.

2. You have to encapsulate the function call do_l ayer 3() which is located in the member function
decodeMP3() which is a member of the behavior B_decodeMP3.

3. First create the behavior signature with an empty body. Use the behavior name B_do_l ayer 3. To
derive the signature you can use the function call signature of do_l ayer 3() . To determine the
direction of the ports (I N, OUT, I NOUT) you have to analyze the program and determine the
accesses. Since this is complicated you could skip this and not specify any port direction. By default
these ports will be treated as I NOUT.

4. Copy the do_layer3() function to the behavior body and add the function call to the do_l ayer 3()
function from the mai n() , just like the previous example.

5. Save the file and do make and make t est and check if the tests run fine.
6. Note the time T4.

7. Now create the instance of the behavior B_do_l ayer 3 in the parent behavior B_decodeMP3. Use
the temporary variables if you need for the port map. Replace the call to function do_l ayer 3 (which
is located in the member function B_decodeMP3: : decodeMP3) with the call to the instance. If you
have used temporary variables, then introduce the necessary assignment statements before the instance
call.

8. Save the file and do make and make t est and check if the tests run fine.
9. Make a note of the time T5

Deliverables:

• 1-paragraph description about the two tasks above
(i.e. how far you got, what were the problems, how did you solve it)

• Please also report the times T0, T1, T2, T3, T4 and T5 (in minutes).

Due: Week 7 (Nov 9, 2007)

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

