
EECS 222A
System-on-Chip Description and Modeling

Fall 2007

Assignment 5

Posted: November 9, 2007 (week 7)
Due: November 16, 2007 (week 8)

Tasks: Part 1: Creating Behaviors in C Code
 Part 2: Pointer Elimination

Instructions: (by Pramod Chandraiah)

Part1 - Converting Statements to Behavior
In the previous assignment, we converted functions into behaviors. In this
assignment, we will encapsulate a set of C statements into behaviors.

Encapsulating Statements in Behaviors

The idea behind encapsulating statements into behavior is same as that of
encapsulating functions, i.e. to create a new computation block with explicit
interface.
As shown in the figure above, encapsulating statements into a behavior involves
creating a behavior body, creating the instance of the newly created behavior,
and replacing the statements with the call to the instance. Note that, creating the
behavior body requires analyzing expressions in the statements, determining
their access type, and determining the port list. Creating the instance requires
creating the port map list.

(a) Original model (Model 1) (b) Statements encapsulated in behavior (Model 2)

1. behavior B_child1(in int p1, in int p2, out int a, out int s) {
2. void main()
3. { a = p1+p2;
4. s = p1-p2;
5. }
6. };

10. behavior B (in int p1, in int p2, out int result) {
11. int a, s;
12. //Instantiate child behavior here
13. I_B_child1(p1, p2, a, s);
14. void main()
15. {
16. int i1, b[10], *pa;
17. I_B_child1.main();
18. pa = &s;
19. …..
20. result = f1(a, b[i1], pa);
21. …..
22. }
23. } ;

1. behavior B (in int p1, in int p2, out int result)
2. {
3. void main()
4. {
5. int i1, a, b[10], s, *pa;
6. a = p1+p2;
7. s = p1-p2;
8. pa = &s;
9. …..
10. result = f1(a, b[i1], pa);
11. …..
12. }
13. int f1(int w, int x, int *p)
14. { *p = w+x+*p;
15. return *p;
16. }
17. };

Initial Setup
The initial setup files are in the tar file mp3_v2. t ar . gz. Untar this file using the command:
gt ar xvzf mp3_v2. t ar . gz
A directory by name mp3_v2 will be created. Change into this directory
cd mp3_v2
You will see following files:
mp3decoder _2. sc – Complete source of a floating point MP3 decoder (same as the one provided for
previous assignment but with two new behaviors).
Makef i l e – To compile and test the sources.
mp3_f i xpt . sc – Complete source of fix-point MP3 decoder (This is needed for part-2 of the
assignment)
huf f man. c, huf f man. h – Needed for fix point MP3 decoder. You can ignore these files as their
inclusion and compilation is taken care in the Makef i l e.
There are 3 directories (r ef er ence/ , r ef er ence- f i x / , t est St r eam/) that contain test
streams and reference output. You don’ t have to worry about these at this stage.
You need to set the path for the SpecC compiler. Source the setup shell script as below:
sour ce / opt / sce- 20060301/ bi n/ set up. csh
Now compile and test the decoder by running following commands
make cl ean
make
make t est
The setup should compile and simulate without errors. (ignore " Can' t s t ep back" and "r ead
l engt h l ess t han max" messages)

Given MP3 Code
The MP3 code is a basic SpecC code. It has 7 behaviors: Stimulus [at line 3179], Monitor [at line 3147],
DUT [at line 3095], MP3Decoder [at line 3041], B_decodeMP3 [at line 2952], B_do_layer3 [at line 2770]
and behavior Main [at line 3221]. Use text editor to view the source code and find these behaviors. We
want to introduce more behaviors in B_do_layer3. In the next section, we describe the changes you have to
do to encapsulate statements into behavior. Note that the line numbers we specify refer to the unmodified
original source file (mp3decoder _2. sc).

Task 1: Encapsulate Statements in lines 2792-2823 in behavior B_do_layer3.

1. We will give a set of instructions to encapsulate these statements into behavior. We would also
like to measure the time it takes to perform this conversion.
Please make a note of the start time T0.

2. do_l ayer 3() is a function in behavior B_do_l ayer 3. This function is defined at line 2776.
We will encapsulate the statements from line 2792 to line 2823 (inclusive).
First we have to create the behavior body. Create a new empty behavior (say at line 2769) with the
signature:
behavi or Bchi l d1_B_do_l ayer 3(
 i nout i nt st er eo,
 i n st r uct f r ame * f r ,
 i nout i nt sf r eq,
 i nout i nt s i ngl e,
 i nout i nt st er eo1,
 i nout i nt ms_st er eo,
 i nout i nt i _st er eo,
 i nout i nt gr anul es,
 i n st r uct I I I _s i dei nf o s i dei nf o)
 {

 } ;

 Note that this signature is obtained by analyzing the lines 2792 – 2823 and determining the
variables and their access types.

3. In the behavior B_decodeMP3 create an empty main function voi d mai n (voi d) { }
4. Copy the C statements (2792-2823) into the mai n() of the Bchi l d1_B_do_l ayer 3.
5. Save the file and do: make and make t est and check if the tests run fine.
6. Note the time T1.

7. Now we have to create the instance of this newly created behavior in the parent behavior. First,

we have to move any local variables accessed by the statements into parent behavior’s scope.
8. Move variables, st er eo, s t er eo1, s i ngl e, i _st er eo, ms_st er eo, sf r eq,

s i dei nf o, gr anul es into parent behavior B_do_l ayer 3. These variables are declared at
the beginning of the function do_l ayer 3. After moving change the name to:
R_st er eo, R_st er eo1, R_si ngl e, R_i _st er eo, R_ms_st er eo, R_sf r eq,
R_si dei nf o, R_gr anul es so that there are no naming clashes.

9. Create an instance of the new behavior in the parent behavior B_do_l ayer 3 after the above

variable declaration and before the mai n body.
Bchi l d1_B_do_l ayer 3 I _Bchi l d1_B_do_l ayer 3(R_st er eo, f r , R_sf r eq,
R_si ngl e, R_st er eo1, R_ms_st er eo, R_i _st er eo, R_gr anul es,
R_si dei nf o) ;

The portmap needed for creating the instance is obtained from the previous analysis of the
statements function call.

10. Now that you have renamed some of the relocated variables, you have to change the references to
the old names with the new names. There are 7 references to variable si dei nf o in the function
do_l ayer 3() , change them to use the new name R_s i dei nf o. There is 1 reference to
gr anul es, change it to R_gr anul es. Similarly, rename the access to other variables
sf r eq, st er eo, st er eo1, ms_st er eo, i _st er eo, gr anul es .

11. Replace the statements with the call to the instance
I _B_decodeMP3. mai n ()

12. Save the file and do: make and make t est and check if the tests run fine.
13. Make a note of the time T2

Task 2: Encapsulate statements in lines 2863 to 2887 in behavior B_do_layer3

1. For performing this task, unlike the previous case, we will not give the detailed directions. We will

briefly outline the steps needed. You will use the source file resulting from the changes done in the
previous step.
Please make a note of the start time T3.

2. You have to encapsulate the statements from line 2863 to 2887 (both lines inclusive). The lines refer to
the original final mp3decoder _2. sc and are located in the function do_l ayer 3 () which is a
member of the behavior B_do_l ayer 3. These will be approximately located at lines 2896 to 2921 in
the file that was saved in step-11 in previous section.

3. First create the behavior signature with an empty body. Use the behavior name
B_chi l d2do_l ayer 3. To derive the signature, analyze the statements and determine the variables
and their accesses. To determine the direction of the ports (I N, OUT, I NOUT) you have to analyze
the program and determine the accesses. It is recommended to determine these directions. However, if
it is too complicated for you, you can skip this and not specify any port direction. By default these
ports will be treated as I NOUT.

4. Copy the statements into the mai n of the B_chi l d2do_l ayer 3 behavior, just like the previous
example.

5. Save the file and do make and make t est and check if the tests run fine.
6. Note the time T4.
7. Now create the instance of the behavior B_chi l d2do_l ayer 3 in the parent behavior

B_do_l ayer 3. If necessary, move the variables into the scope of the behavior. Replace the
statements with the call to the newly created instance.

8. Save the file and do make and make t est and check if the tests run fine.
9. Make a note of the time T5

At the end, please report the times T0, T1, T2, T3, T4 and T5.

Part2 - Pointer Replacement
As we know, pointers in the C code create ambiguity and make the code unanalyzable and unsynthesizable
by automatic tools. In this part, you will see how to replace indirect variable access through pointers with
direct variable access.

Pointer re-coding example

Pointer re-coding is a 2 step process. First, you have to determine the variable to which the pointer points to
and second, replace the pointer accesses with the direct access to the target variable. The figure above
shows some examples of pointer recoding. Note that pointers to the scalar variables are completely
removed, and in place of pointer to the arrays, integer variables that act as indices into the array are created
(e.g. line3). Expressions of the pointers that point to arrays are replaced with the array access expression
formed by the actual variable the newly created index variable (e.g. line 10). Pointer p2 is not recoded as
it could point to more than 1 variable.

Initial Setup
You will use the same set up as the part-1 of this assignment, except that you will use fix-point MP3
decoder implementation which is contained in the single source file mp3_f i xpt . sc.
As usual, you need to set the path for the SpecC compiler. Source the setup shell script as below:
sour ce / opt / sce- 20060301/ bi n/ set up. csh
Now compile and test the decoder by running following commands (note that commands are different from
before)
make cl ean
make al l _f i x
make t est _f i x

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int *p1,*p2, *p3, *p4, (*p5)[16], p6;

4. p1 = &x;
5. *p1 = y+1;
6. if(condition) p2 = &v1;
7. else p2 = &v2;
8. *p2 = 5;
9. p3 = &ab[40][10];
10. *p3 = 100;
11. p4 = a;
12. p4++;
13. *p4++ = 1;
14. p5 = &ab[5];
15. p6 = p4+v1;

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int ip3, ip4, ip5, ip6;

4. //Nothing here
5. x =y+1;
6. if(condition) p2 = &v1;
7. else p2 = &v2;
8. *p2 = 5;
9. ip3 =10;
10. ab[40][ip3] = 100;
11. ip4 = 0;
12. ip4++;
13. a[ip4++] = 1;
14. ip5 = 5;
15. ip6 = ip4+v1;

(a) Code with pointers (b) Code with p1, p3, p4, p5, p6 substituted

Given Fix-point MP3 Code
This is a fix-point MP3 implementation in SpecC. It has many behaviors, including Mad_St i mul us [at
line 13681], Mad_Moni t or [at line 13533], MP3Decoder [at line 13717] and behavior Mai n [at line
13746]. Use text editor to view the source code and find these behaviors. We will replace couple of
pointers in the behavior Cal c_sampl e located at line 13177. In the next section, we describe the changes
you have to do to replace a pointer. Note that the line numbers we refer to are the unmodified lines in the
original source file (mp3_f i xpt . sc).

Task 3: Replace pointer fe in behavior Calc_sample

1. We will now give a set of instructions to replace the pointer expressions. We would also like to

measure the time it takes to perform this conversion.
Please make a note of the start time T0.

2. Pointer i nt (* f e) [8] is declared at line 13202 in the mai n body of Cal c_sampl e
behavior and this pointer points to multi-dimensional array f i l t er [2] [2] [16] [8] which is
a port of the behavior. More specifically, f e points to the dimension
(f i l t er) [0] [phase & 1] .

3. We have to replace all accesses to f e with the direct access to the array variable f i l t er . As a
first step, create an integer variable which acts as an index variable (i _f e) into the array in place
of the pointer f e. You can remove the pointer declaration.

4. Replace the pointer initialization statement (f e = &(f i l t er) [0] [phase & 1] [0] ;) at
line 13214 with the initialization of the index variable i _f e. (i _f e = 0).

5. Replace the expressions involving f e with the direct access to f i l t er . For example, replace
the expression at line 13229 which is :
((l o) += ((* f e) [0]) * (pt r [0])) ;
((l o) += ((* f e) [1]) * (pt r [14])) ;
with
((l o) += (((f i l t er) [0] [phase & 1] [i _f e]) [0]) * (pt r [0])) ;
((l o) += (((f i l t er) [0] [phase & 1] [i _f e]) [1]) * (pt r [14])) ;
and so on…

6. Similarly, replace all the other expression involving f e in the mai n() body.
7. Arithmetic Expressions involving f e such as the one at line 13242:

++f e;
is replaced with
++i _f e;

8. Save the file and do: make al l _f i x and make t est _f i x and check if the tests run fine.
9. Make a note of the time T2

Task 4: Replace pointer fx, fo and Dptr in behavior Calc_sample

1. We will note give complete instructions to recode these pointers. These pointers can be recoded on

similar lines as pointer f e.
2. Pointer f x is declared at line 13204 and its initialization is at line 13215. Note that this pointer

points to dimension (f i l t er) [0] [~phase & 1] .
3. Replace this pointer and make a note of the start and the end time to perform the task (T3, T4)

4. Pointer f o is declared at line 13203 and its initialization is at line 13216. Note that this pointer

points to dimension (f i l t er) [1] [~phase & 1] .
5. Replace this pointer and make a note of the start and the end time to perform the task (T5, T6)

6. Pointer Dpt r is declared at line 13205 and its initialization is at line 13217. Note that this pointer
points to array D.

7. Replace this pointer and make a note of the start and the end time to perform the task (T6, T7)

At the end, please report the times T0 trough T7.

Deliverables:

• 1-paragraph description about each of the tasks above
(i.e. how far you got, what were the problems, how did you solve it)

• Please also report the times for part 1 (T0 to T5, in minutes), and for part 2
(T0 to T7, in minutes).

Due: Week 8 (Nov 16, 2007)

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

