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Lecture 1: Overview

• Course administration
– Overview
– Contents
– Schedule
– Assignments

• Introduction to System-on-Chip design
– Levels of abstraction
– System design flow
– Computational models
– System-level description languages
– Computation, communication, IP
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Course Administration

• Course web pages at
http://eee.uci.edu/07f/18430/

– Instructor information
– Course description and policies
– Objectives and outcomes
– Contents and schedule
– Resources and communication
– Assignments
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Introduction to SoC Design

• System-on-Chip (SoC) design
• Abstraction levels
• SoC design flow
• Computational models
• System-level description languages
• Computation vs. communication
• Intellectual Property (IP)
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System-on-Chip Design

• Embedded systems are everywhere…

• Deep sub-micron design enables
System-on-Chip (SoC)
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Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity
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Abstraction Levels

• System-on-Chip (SoC) design faces tremendous
increase of design complexity

• Move to higher levels of abstraction!
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Abstraction Levels
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Abstraction Levels
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Top-Down SoC Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing



EECS222A: SoC Description and 
Modeling

Lecture 1

(c) 2007 R. Doemer 6

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2007 R. Doemer 11

Computational Models

• Models of Computation
– Formal, abstract description of a system
– Various degrees of

• supported features
• complexity
• expressive power

• Examples
– Evolution process from FSM to PSM

• Finite State Machine (FSM)
• FSM with Data (FSMD)
• Super-state FSMD
• ...
• Program State Machine (PSM)
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Computational Models

• Finite State Machine (FSM)
– Basic model for describing control
– States and state transitions

• FSM = <S, I, O, f, h>

– Two types:
• Mealy-type FSM (input-based)
• Moore-type FSM (state-based)

S1 S2

S3

FSM model
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)

– Basic model for describing computation

– Directed graph
• Nodes: operations

• Arcs: dependency of operations

Op2 Op3

Op4

Op6

Op1

Op5

DFG model
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)

– Combined model for control and computation
• FSMD = FSM + DFG

– Implementation: controller plus datapath

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2



EECS222A: SoC Description and 
Modeling

Lecture 1

(c) 2007 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 1 (c) 2007 R. Doemer 15

Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)

– FSMD with complex, multi-cycle states
• States described by procedures in a programming language

SFSMD model

a = a + b;
c = c + d;

PS3

PS1 PS2PS2

PS3

PS1

a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
a = a + c;
}

a = 42;
b = a * 2;
for(c=0; c<100; c++)
{ b = c + a;
if (b < 0)

b = -b;
else

b = b + 1;
a = b * 10;
}
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)

– FSM extended with hierarchy and concurrency
• Multiple FSMs composed hierarchically and in parallel

– Example: Statecharts

S4

S5

S3

S2

S1

HCFSM model
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Computational Models

• Finite State Machine (FSM)
• Data Flow Graph (DFG)
• Finite State Machine with Data (FSMD)
• Super-State FSM with Data (SFSMD)
• Hierarchical Concurrent FSM (HCFSM)
• Program State Machine (PSM)

– HCFSMD plus programming language
• States described by procedures

in a programming language

– Example: SpecC!

PS4

PS5

PS3

PS2

PS1

...
a = 42;
while (a<100)
{ b = b + a;
if (b > 50)

c = c + d;
else

c = c + e;
a = c;
}

...

PSM model
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System-Level Description Languages

• Goals
– Executability

• Validation through simulation

– Synthesizability
• Implementation in HW and/or SW
• Support for IP reuse

– Modularity
• Hierarchical composition
• Separation of concepts

– Completeness
• Support for all concepts found in embedded systems

– Orthogonality
• Orthogonal constructs for orthogonal concepts
• Minimality

– Simplicity
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System-Level Description Languages

Behavioral
hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State
transitions
Composite
data types

SpecCharts

Statecharts

HardwareC

Verilog

VHDL
Java

C++C
SpecC

not supported partially supported supported

• Requirements
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System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

– SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

– SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

– UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.
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System-Level Description Languages

• Examples in use today
– C/C++

• ANSI standard programming languages, software design
• traditionally used for system design because of practicality, availability

� SystemC
• C++ API and library
• initially developed at UCI, supported by Open SystemC Initiative

� SpecC
• C extension
• developed at UCI, supported by SpecC Technology Open Consortium

– SystemVerilog
• Verilog with C extensions

– Matlab
• specification and simulation in engineering, algorithm design

� UML
• unified modeling language, software specification, graphical

– SDL
• telecommunication area, standard by ITU, used in COSMOS

– SLDL
• formal specification of requirements, not executable

– etc.
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Separation of Concerns

• Fundamental principle in modeling of systems
• Clear separation of concerns

– address separate issues independently

• System-Level Description Language (SLDL)
– orthogonal concepts
– orthogonal constructs

• System-level Modeling
– Computation

• encapsulated in modules / behaviors

– Communication
• encapsulated in channels
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Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

s2

s1

s3

P1 P2
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Computation vs. Communication

• Traditional model

– Processes and signals

– Mixture of computation and communication

– Automatic replacement impossible

• SpecC model

– Behaviors and channels
– Separation of computation and communication

– Plug-and-play

s2

s1

s3

P1 P2

B2

v2

v1

v3

B1
C1
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Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

B2

v2

v1

v3

B1
C1
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Computation vs. Communication

• Protocol Inlining
– Specification model
– Exploration model

• Computation in behaviors

• Communication in channels

– Implementation model

• Channel disappears

• Communication inlined into behaviors
• Wires exposed

B2

v2

v1

v3

B1
C1

B2B1

v2

v1

v3
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v2

v1

IP in wrapper

Intellectual Property (IP)

• Computation IP: Wrapper model
B

Synthesizable
behavior

IP
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Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper
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Intellectual Property (IP)

• Computation IP: Wrapper model
B T

v2

v1 IP
replacable
at any time

Synthesizable
behavior

Transducer IP in wrapper

• Protocol inlining with wrapper

B1

v2

v1 IP

before after

v2

v1 IP
B1
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Intellectual Property (IP)

• Computation IP: Adapter model
B

replacable
at any time

Synthesizable
behavior

T

Transducer

v2

v1
A

Adapter

IP

IP
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Intellectual Property (IP)

• Computation IP: Adapter model
T

v2

v1

IP
A

B

replacable
at any time

Synthesizable
behavior

Transducer Adapter IP

• Protocol inlining with adapter

B1

v2

v1

IP
A

before

B1

v2

v1

IP

after
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IP protocol channel in wrapper

C2

Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel

v2

v1

v3

C1

IP
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Intellectual Property (IP)

• Communication IP: Channel with wrapper

replacable
at any time

Virtual channel IP protocol channel in wrapper

v2

v1

v3

IP

• Protocol inlining with hierarchical channel

B1 B2

v2

v1

before

v2

v1

B1 B2

after

C1 C2
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Intellectual Property (IP)

• Incompatible busses: Transducer insertion
T

v2

v1

v3

B1

v5

v4

IP
A

Transducer Adapter IPIP busSystem busSynthesizable
behavior
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Intellectual Property (IP)

• Incompatible busses: Transducer insertion

• Protocol inlining with transducer

T
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