EECS 222A: System-on-Chip Description and Modeling Lecture 10

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 10: Overview

- Course Administration
 - Final course evaluation
- Homework Assignment 7
 - Develop a SpecC Model of your choice
 - Final Report on System Modeling
- Project discussion
 - Q & A

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

2

Course Administration

- Final Course Evaluation
 - Open until end of 10th week
 - Nov. 26, 2007, 12pm Dec. 9, 2007, 11:45pm
 - Online via EEE Evaluation application
- Mandatory Evaluation of Course and Instructor
 - Voluntary
 - Anonymous
 - Very valuable
- Help to improve this class!
- Please spend 5 minutes!

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

3

Homework Assignment 7

- Tasks
 - Develop a System Specification Model in SpecC
 - Option 1: extended Elevator Control System (ECS)
 - Option 2: an embedded system of your choice
 - Simulate and document your model
- Model Structure
 - Test bench behavior Main
 - · Stimulus behavior
 - Design Under Test (DUT)
 - multiple levels of hierarchy
 - sequential, FSM, parallel, or pipelined composition
 - Monitor behavior

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

4

Homework Assignment 7

Deliverables

- Source code (in SpecC) of the model
- Successful simulation run (log file)
- Final Report on System Modeling
 - · Documentation of your system
 - Description of functionality
 - Schematic view of DUT in the test bench
 - max. 10 pages (plus appendix, if applicable)

Due

- December 14, 2007, 4pm (Final Week)
- Email or hardcopy

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

5

Option 1: Elevator Control System

- Example Project
 - Elevator Control System (ECS)
 - · Distributed embedded system
 - Set of communicating Elevator Control Units (ECU)

Project Documentation

- D. Castellanos, R. Dömer:
 - "System-Level Modeling and Simulation of an Elevator Control System",
 - CECS Technical Report 07-04, June 2007.
- http://www.cecs.uci.edu/~doemer/publications/CECS_TR_07_04.pdf
- Tasks
 - Extend and document the given system (see Assignment 3)
 - Specify an intelligent Main Control Unit
 - Simulate a scenario with elevator cars servicing multiple requests

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

6

Option 1: Elevator Control System

- Decomposition of ECS into multiple ECUs
 - Floor panel
 - panel at each floor and each shaft with up/down controls
 - Floor display
 - · display of current floor and direction at each floor
 - Floor door
 - Control unit to open/close doors at each floor
 - Car panel
 - panel in each car with request controls
 - Car display
 - · display of current floor and direction in each car
 - Car door
 - Control unit to open/close doors in each car
 - Main control unit
 - · central control unit to control the entire ECS
 - Motor control unit
 - · control unit for the motor atop each shaft

EECS222A: SoC Description and Modeling, Lecture 10

(c) 2007 R. Doemer

7