EECS 222A: System-on-Chip Description and Modeling Lecture 3

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 3: Overview

- Homework Assignment 1
 - Discussion, Q&A
- System-on-Chip Specification
 - Essential issues
 - Top-down SoC design flow
 - Specification Model
 - Specification Modeling Guidelines
- System-on-Chip Environment (SCE)
 - Demonstration
 - Example: GSM Vocoder
- Homework Assignment 2
 - Tasks

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

2

Homework Assignment 1

- Administration
 - Server
 - epsilon.eecs.uci.edu
 - Intel Pentium CPU, 3.0 GHz, 1GB RAM
 - RedHat Linux (Fedora Core 4)
 - Access via secure shell protocol (ssh)
 - Accounts
 - User ID same as your UCI net ID
 - · Password as discussed in class
 - SpecC Software (© by CECS, UCI)
 - SpecC Compiler and Simulator
 - /opt/sce-20041007/bin/setup.csh

EECS222A: SoC Description and Modeling, Lecture 3

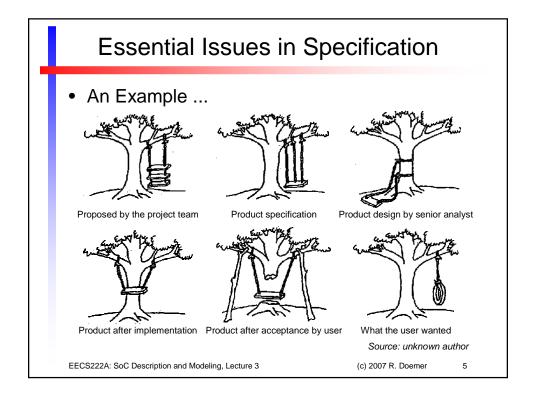
(c) 2007 R. Doemer

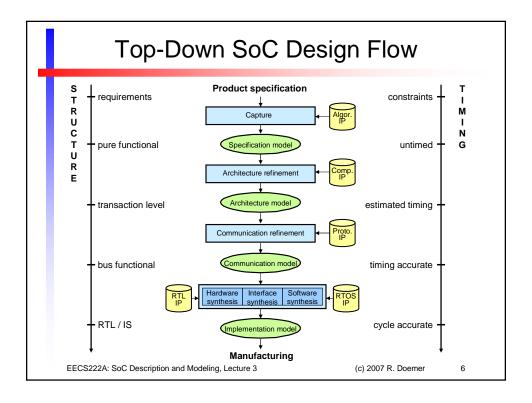
3

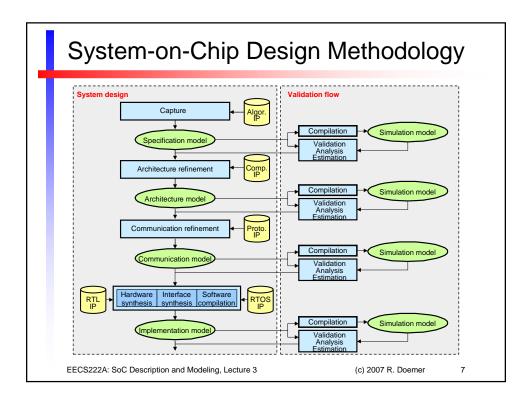
Homework Assignment 1

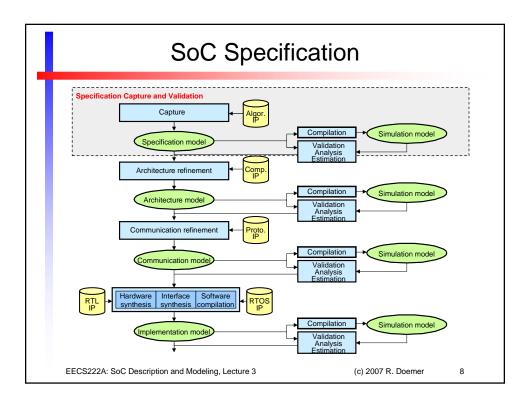
- Task
 - Become familiar with
 - the SpecC compiler, scc
 - · the SpecC simulator
 - Use scc to
 - · compile,
 - · simulate and
 - modify

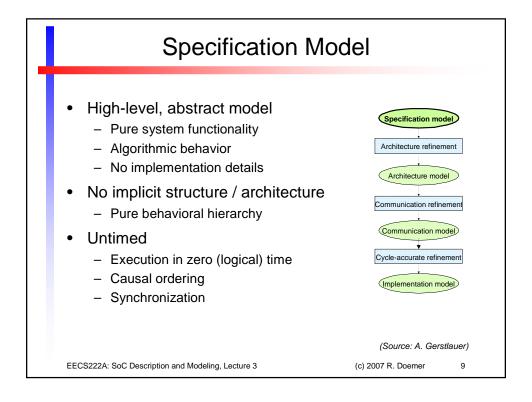
the examples found in

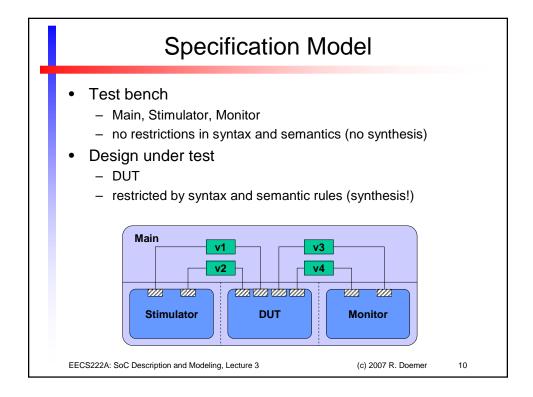

/opt/sce-20041007/examples/simple/


- Deliverables
 - none (but be prepared for the next assignment)
- Due
 - next week (Week 3)


EECS222A: SoC Description and Modeling, Lecture 3


(c) 2007 R. Doemer


4



Specification Modeling Guidelines

- Functional and executable
 - "golden model" (first functional model in the design flow)
 - all other models will be derived from and compared to this one
- High abstraction level
 - no implementation details
 - unrestricted exploration of design space
- Separation of communication and computation
 - channels and behaviors
- Pure functional
 - no structural information
- No timing
 - exception: timing constraints

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

11

Specification Modeling Guidelines

Computation: Behaviors

Hierarchy: explicit concurrency, state transitions, ...
 Granularity: leaf behaviors = smallest indivisible units

Encapsulation: localization, explicit dependencies

- Concurrency: explicitly specified (par, pipe, fsm, seq, ...)

Time: un-timed, partial ordering

· Communication: Channels

Semantics: abstract communication, synchronization

(standard channel library)

Dependencies: explicit data dependency,

partial ordering, port connectivity

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

12

Specification Modeling Guidelines

- Example rules for SoC Environment (SCE)
 - Clean behavioral hierarchy
 - hierarchical behaviors:
 no code other than par, pipe, seq, fsm, try-trap, ... statements
 - leaf behaviors:
 no child behavior calls (basically pure ANSI-C code)
 - Clean communication
 - point-to-point communication via standard channels
 - ports of plain type or interface type, no pointers!
 - · port maps to local variables or ports only
- Detailed rules for SoC Environment
 - CECS Technical Report 03-21:
 "System-on-Chip Specification Style Guide"
 by A. Gerstlauer, K. Ramineni, R. Doemer, D. Gajski
 - http://www.ics.uci.edu/~doemer/publications/CECS_TR_03_21.pdf

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

12

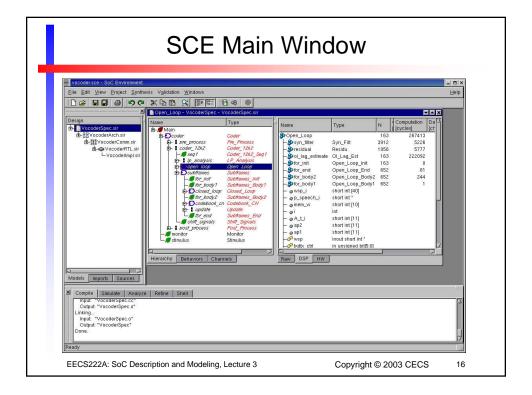
Specification Modeling Guidelines

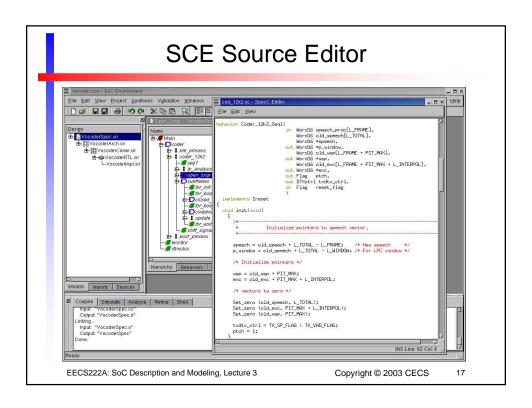
- Example: C code conversion to SpecC
 - Functions become behaviors or channels
 - Functional hierarchy becomes behavioral hierarchy
 - · clean behavioral hierarchy required
 - · if-then-else structure becomes FSM
 - · while/for/do loops become FSM
 - Explicitly specify potential parallelism
 - Explicitly specify communication
 - · avoid global variables
 - use local variables and ports (signals, wires)
 - · use standard channels
 - Data types
 - · avoid pointers, use arrays instead
 - use explicit SpecC data types if suitable

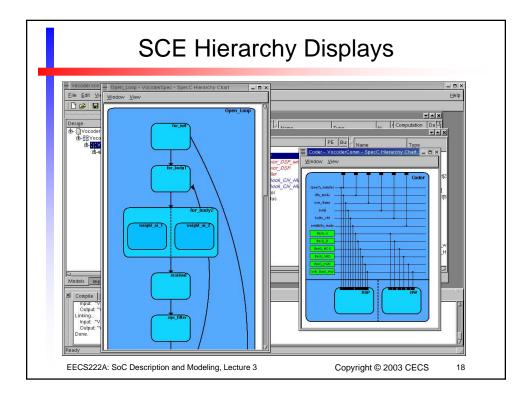
EECS222A: SoC Description and Modeling, Lecture 3

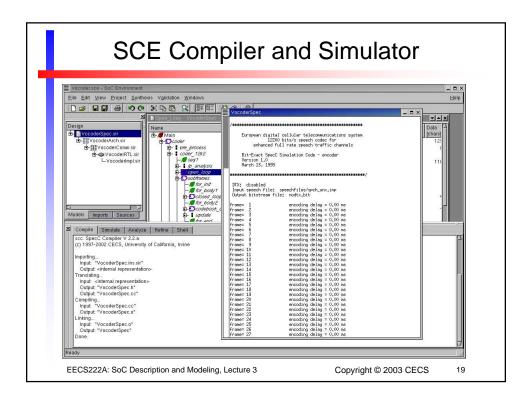
(c) 2007 R. Doemer

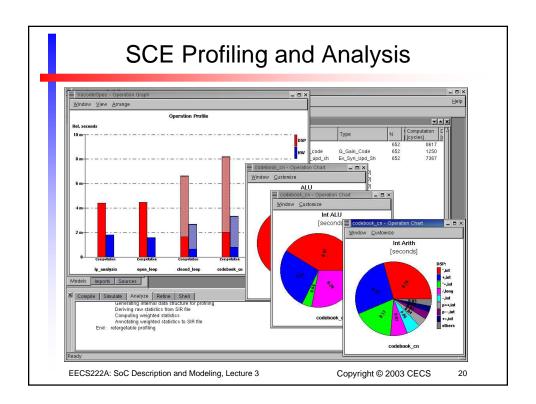
14


System-on-Chip Environment (SCE)


- SCE Components:
 - Graphical frontend (sce, scchart)
 - Editor (sced)
 - Compiler and simulator (scc)
 - Profiling and analysis (scprof)
 - Architecture refinement (scar)
 - RTOS refinement (scos)
 - Communication refinement (sccr)
 - RTL refinement (scrtl)
 - Software refinement (sc2c)
 - Scripting interface (scsh)
 - Tools and utilities ...


EECS222A: SoC Description and Modeling, Lecture 3


(c) 2007 R. Doemer


15

Specification Model Example

- GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - · Lossy voice encoding/decoding
 - Incoming speech samples @ 104 kbit/s
 - Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - · 73 leaf behaviors
 - 9139 formatted lines of SpecC code (~13000 lines of original C code, including comments)

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

21

Homework Assignment 2

- Administration
 - Server
 - epsilon.eecs.uci.edu
 - Intel Pentium CPU, 3.0 GHz, 1GB RAM
 - RedHat Linux (Fedora Core 4)
 - Access via secure shell protocol (ssh)
 - Accounts
 - · User ID same as your UCI net ID
 - Password as discussed in class
 - SpecC Software (© by CECS, UCI)
 - System-on-Chip Environment
 - /opt/sce-20041007/bin/setup.csh
 - /opt/sce-20060301/bin/setup.csh

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

22

Homework Assignment 2

- Task
 - Become familiar with
 - the System-on-Chip Environment (SCE)
 - Follow the initial steps in the SCE Tutorial
 - /opt/sce-20041007/doc/SCE_Tutorial/ sce-tutorial.pdf
- Deliverables
 - none (but be prepared for the next assignment)
- Due
 - next week (Week 4)

EECS222A: SoC Description and Modeling, Lecture 3

(c) 2007 R. Doemer

23