
EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 1

EECS 222A:
System-on-Chip Description and Modeling

Lecture 4

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 2

Lecture 4: Overview

• Homework Assignment 2
– Discussion, Q&A

• Execution and Simulation Semantics
– System-level Language Semantics
– Motivating Examples
– Simulation Semantics
– Formal Execution Semantics

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 2

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 3

Homework Assignment 2

• Administration
– Server

• epsilon.eecs.uci.edu

• Intel Pentium CPU, 3.0 GHz, 1GB RAM
• RedHat Linux (Fedora Core 4)
• Access via secure shell protocol (ssh)

– Accounts
• User ID same as your UCI net ID
• Password as discussed in class

– SpecC Software (© by CECS, UCI)
• System-on-Chip Environment

– /opt/sce-20041007/bin/setup.csh

– /opt/sce-20060301/bin/setup.csh

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 4

Homework Assignment 2

• Task
– Become familiar with

• the System-on-Chip Environment (SCE)

– Follow the initial steps in the SCE Tutorial
• /opt/sce-20041007/doc/SCE_Tutorial/
sce-tutorial.pdf

• Deliverables
– none (but be prepared for the next assignment)

• Due
– next week (Week 4)

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 3

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 5

System-level Language Semantics

• Concepts found in Embedded Systems
– Behavioral and structural hierarchy
– Concurrency

– Synchronization and communication

– Exception handling

– Timing

– State transitions

• System-level language must support these concepts
• Language semantics needed to define the meaning

– Semantics of execution (modeling, simulation, synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency
– Atomic operations

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 6

System-level Language Semantics

• Language semantics are needed for
– System designer (understanding)
– Tools

• Validation (compilation, simulation)
• Formal verification (equivalence, property checking)
• Synthesis

– Documentation and standardization

• Objective:
– Clearly define the execution semantics of the language

• Requirements and goals:
– completeness
– precision (no ambiguities)
– abstraction (no implementation details)
– formality (enable formal reasoning)
– simplicity (easy understanding)

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 4

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 7

System-level Language Semantics

• Example: SpecC language
– Documentation

• Language Reference Manual (LRM)
� set of rules written in English (not formal)
• Abstract simulation algorithm
� set of valid implementations (not general)

– Reference implementation
• SpecC Reference Compiler and Simulator
� one instance of a valid implementation (not general)
• Compliance test bench
� set of specific test cases (incomplete)

– Formal execution semantics
• Time-interval formalism
� rule-based formalism (incomplete)
• Abstract State Machines
� fully formal approach (not easy to understand)

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 8

Execution and Simulation Semantics

• Motivating Example 1
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

b1; b2;
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 5

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 9

Execution and Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

x = 5;
}

};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 10

Execution and Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x after the execution of B?
– Answer: x = 5

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

x = 6;
}

};

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 6

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 11

Execution and Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x after the execution of B?
– Answer: The program is non-deterministic!

(x may be 5, or 6, or any other value!)

behavior B
{

int x;
B1 b1(x);
B2 b2(x);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(int x)
{

void main(void)
{

waitfor 10;
x = 5;

}
};

behavior B2(int x)
{

void main(void)
{

waitfor 10;
x = 6;

}
};

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 12

Execution and Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 7

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 13

Execution and Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 14

Execution and Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x after the execution of B?
– Answer: x = 6

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

wait e;
x = 6;

}
};

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 15

Execution and Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x after the execution of B?
– Answer: B never terminates!

(the event is lost)

behavior B
{

int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{

par{b1; b2;}
}

};

behavior B1(
int x, event e)

{
void main(void)
{

x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{

waitfor 10;
wait e;
x = 6;

}
};

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 16

Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– available in LRM (appendix), good for understanding
� set of valid implementations

� not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N
• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N
• Expiration of notified events means N is set to Ø

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 9

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 17

Simulation Semantics

• Abstract Simulation Algorithm for SpecC

�����������	
��∈���������������

��������
������������notify

������∈�����������

������∈��������������

wait

waitfor

���� !

����� !

���� !

"#
	�����$��	�������$���$�����	��������∈��������������

���� !

���#

��	��

��

���

��

���

��

���

���

���

���

�����	����∈����%	����&�������������∈���������

��

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 18

Simulation Semantics

• Abstract Simulation Algorithm for SpecC
– Discrete Event Simulation

• utilizes delta-cycle mechanism
• matches execution semantics of other languages

– SystemC
– VHDL
– Verilog

– Features
• clearly specifies the simulation semantics
• easily understandable
• can easily be implemented

– Generality
• is one valid implementation of the semantics

• other valid implementations may exist as well

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 10

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 19

Formal Execution Semantics

• Two examples of semantics definition:
1) Time-interval formalism

• formal definition of timed execution semantics
• sequentiality, concurrency, synchronization
• allows reasoning over execution order, dependencies

2) Abstract State Machines
• complete execution semantics of SpecC V1.0

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• influence on the definition of SpecC V2.0
• straightforward extension for SpecC V2.0
• comparable to ASM specifications of SystemC and

VHDL 93

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 20

Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of par)
• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)
{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 11

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 21

• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time
– other statements execute in zero simulation time

behavior B
{ void main(void)
{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0 <= Tstart(a) < Tend(a) < 1
0 <= Tstart(w) < Tend(w) = 10

10 <= Tstart(b) < Tend(b) < 11

Formal Execution Semantics

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 22

Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f) < Tend(f) <= Tend(B)

behavior B2
{ void main(void)

{ d; e; f; }
};

behavior B1
{ void main(void)

{ a; b; c; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 12

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 23

• Time-interval formalism
– Atomicity

• Since there is no atomicity guaranteed, a safe mechanism
for mutual exclusion is necessary

• SpecC 2.0:
– A mutex is implicitly contained in each channel instance
– Each channel method implicitly acquires the mutex when it

starts execution and releases the mutex again when it finishes
– An acquired mutex is also released at wait and waitfor

statements and will be re-acquired before execution resumes

• This easily enables safe communication without
unnecessary restrictions to the implementation!

Formal Execution Semantics

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 24

Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <= Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d) < Tend(d) <= Tend(B)

behavior B2
{ void main(void)

{ c; notify e; d; }
};

behavior B1
{ void main(void)

{ a; wait e; b; }
};

behavior B
{ void main(void)

{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 13

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 25

• Abstract State Machine (ASM)
– aka. Evolving Algebras (Y. Gurevich, 1987)
– ASM semantics already exist for

• Prolog, Concurrent Prolog
• C, C++, Java
• VHDL, VHDL-AMS, SystemC

– ASM semantics for SpecC published at ISSS’02

• ASM components
– Sequence of algebras (functions over domains):

states
– Rules define updates of functions:

state transitions

Formal Execution Semantics

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 26

Abstract State Machine (ASM)

f(0) := 42
f(0,0) := 0

Update SetUpdate Set

g = 0
f(0) = undef
f(0,0) = 23
f(0,1) = 6

g = 0
f(0) = 42
f(0,0) = 0
f(0,1) = 6

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0

Algebra A Algebra A‘

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0 U

pd
at

e
S

et
U

pd
at

e
S

et

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 14

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 27

ASM: SpecC Kernel Semantics

• Phase 1: at least one BEHAVIOR is running
• Phase 2: all BEHAVIORs are not running

ExecuteBehaviors

ProcessEvents

Check/ResetEvents

AdvanceTime

ProcessTimeouts

if events
if no events

exit

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 28

ASM: SpecC Behavior Semantics

running

waiting

completed

interrupted

last stmt

interrupt

wait
waitfor

fork

event
timeout

join

trap

last stmt

status(p) ∈ {running, waiting, interrupted, completed}
∈ BEHAVIOR:p

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running

• wait statement
if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)

endif;

EECS222A: SoC Description and
Modeling

Lecture 4

(c) 2007 R. Doemer 15

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 29

ASM: SpecC Statement Semantics

• modelling execution of statements of behavior “Self”
Self executes <statement> ≡

programCounter(Self) = <statement> ∧ status (Self) = running
• wait statement

if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self)

endif;

• notify statement
if Self executes <notifynotify(EventList(EventList))>
then ∀ e ∈ EventList: notified(e) := true,

programCounter(Self) := nextStmt(Self)
endif;

' ������$��	�����(������������	���)��	���� ���

��	���*)+, �������&���∃�,��������
�+� ������∧ ��∈ ����������-�)+

EECS222A: SoC Description and Modeling, Lecture 4 (c) 2007 R. Doemer 30

ASM: SpecC Summary

• Formal Semantics of SpecC Execution
• complete execution semantics of SpecC V1.0 by ASMs

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• can be easily extended to V2.0
• influenced the definition of SpecC V2.0
• SpecC ASM specification is comparable to

other ASM specifications
• SystemC
• VHDL 93

