EECS 222A: System-on-Chip Description and Modeling Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 5: Overview

- Project Discussion
 - Elevator example
- Homework Assignment 3
 - Tasks

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

2

Project Discussion

- Example Project
 - Elevator Control System (ECS)
 - Distributed embedded system
 - Set of communicating Elevator Control Units (ECU)
- Tasks for System Specification
 - Decompose ECS into multiple ECUs
 - Develop a specification model for each ECU
 - Validate each ECU model using simulation
 - Compose entire ECS using developed ECUs
 - Validate entire ECS
 - Then, refine and implement ECS...

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

3

Project Discussion

- Decomposition of ECS into multiple ECUs
 - Floor panel
 - panel at each floor and each shaft with up/down controls
 - Floor display
 - · display of current floor and direction at each floor
 - Floor door
 - Control unit to open/close doors at each floor
 - Car panel
 - · panel in each car with request controls
 - Car display
 - display of current floor and direction in each car
 - Car door
 - · Control unit to open/close doors in each car
 - Main control unit
 - · central control unit to control the entire ECS
 - Motor control unit
 - control unit for the motor atop each shaft

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

4

Project Discussion

- Project Documentation:
 - D. Castellanos, R. Dömer:
 "System-Level Modeling and Simulation of an Elevator Control System",
 CECS Technical Report 07-04, June 2007.
 - http://www.cecs.uci.edu/~doemer/publications/CECS_TR_07_04.pdf

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

5

Homework Assignment 3

- Task
 - Develop a simple system specification model
 - such as one ECU in the ECS
 - · the system should consist of
 - Test bench behavior Main
 - Stimulus behavior
 - Design Under Test (DUT)
 - Monitor behavior
 - in SpecC language
 - Simulate your model

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

6

Homework Assignment 3

- Deliverables
 - 1-page specification of your system
 - Illustration figure / schematic view of DUT with ports
 - Brief (!) description of functionality (in English)
 - Executable source code (in SpecC)
 - Successful simulation run
- Due
 - Week 6 (next week)

EECS222A: SoC Description and Modeling, Lecture 5

(c) 2007 R. Doemer

7