
EECS 211
Advanced System Software

Winter 2007

Assignment 4

Posted: February 19, 2007
Due: March 5, 2007

Topic: User programs and system calls in Nachos

Instructions:

The goal of this fourth assignment is to develop, implement and test support for
user programs making system-calls to the Nachos kernel. This assignment
follows the first task of “Nachos Assignment 2” described in the file
doc/userprog.ps of the Nachos installation. The instructions below assume
that you read doc/userprog.ps in parallel.

Preparation: Understand the given framework

Go into the userprog directory. Run the given program nachos with the given
user program ../test/halt to test the given code. Trace the execution path
by using the built-in debugging facilities. Run the program step by step using the
debugger gdb. Finally, read in detail through the given sources provided in the
userprog directory.
Make sure you understand what is going on when the user program is compiled,
is loaded, executes, issues a system call, and dies.

To fully understand the user program execution on the emulated MIPS machine,
read also the sources in other directories (e.g. machine), as listed in the
doc/userprog.ps document. However, note that you will only need to change
files in the userprog and test directories for this assignment. All other files
should be left unmodified.

Extra Credit: (up to 30 extra points)

Discuss this assignment on the course noteboard! Post at least one useful
question, a helpful comment, or answer/discuss one of the posted questions!

Example topics for the discussion include the compilation, loading, execution,
system-call, and termination of user programs in the Nachos environment, or the
difference and boundaries between user- and kernel-land in Nachos. Details on
the following implementation tasks are interesting topics as well, of course.
Please, however, do not post solutions in form of complete source code!

Task 1: Implement basic exception handling and system calls for file I/O

See item 1 in doc/userprog.ps.
Modify and complete the code in file exception.cc to support the exception
types listed in ../machine/machine.h and the system calls listed in
syscall.h. To do this, implement a (big) switch statement in the function
ExceptionHandler()with one case for each exception type. The
SyscallException should be handled by a new function SystemCall that
again contains a (big) switch statement to handle each type of system call. All
this code should go into file exception.cc.
Note that, except for the SyscallException, all exceptions are fatal errors for
the user program at this time (in later assignments, we will change that). Thus,
the kernel should print an error message (for us to observe the error) and then
cleanly terminate the user program.

We will first limit ourselves to support only basic system-calls. For this
assignment, your code should support the following 7 system-calls:

(a) SC_Halt
(b) SC_Exit
(c) SC_Create
(d) SC_Open
(e) SC_Read
(f) SC_Write
(g) SC_Close

For the file I/O system calls, you should support input from the console
(OpenFileId ConsoleInput, alias stdin), output to the console
(OpenFileId ConsoleOutput, alias stdout), and input and output to regular
files (OpenFileId > 1). For console I/O, it will be necessary to implement a
synchronous console class (for simplicity, place the class SynchConsole into
the file exception.cc). You will find the class SynchDisk provided in the
filesys directory very helpful as it contains very similar functionality.

Note that you will need to copy data from kernel address space into user space.
For example, for the SC_Open system call, you need to read a filename provided
in user land. To achieve this cleanly, implement a set of dedicated memory copy
functions in the kernel, with the following signatures:
void CopyToKernel(

int FromUserAddress,
int NumBytes,
void *ToKernelAddress);

void CopyToUser(
void *FromKernelAddress,
int NumBytes,
int ToUserAddress);

In addition, it will be convenient to have copy functions which handle null-
terminated strings, as follows:
void CopyStringToKernel(

int FromUserAddress,
char *ToKernelAddress);

void CopyStringToUser(
char *FromKernelAddress,
int ToUserAddress);

To implement these functions, you can use the functions ReadMem() and
WriteMem() which are declared in machine.h and implemented in
translate.cc. Note that we will re-use these functions just for simplicity
(actually, this is considered "dirty" because this uses internal functions of the
machine simulation; see the comment above the function declaration in
machine.h).

Further, to properly handle the file I/O system calls, you will need to maintain a
list of open files for each process. Class AddrSpace (in files addrspace.h and
addrspace.cc) is a good place to keep this list and its maintenance functions
because each process is now assigned such a space (via the Thread->space
pointer). To keep things simple, maintain an array of 5 entries for open files. The
first two entries should be reserved for ConsoleInput (alias stdin) and
ConsoleOutput (alias stdout). Make sure to check parameters provided by
I/O system calls properly and cleanly abort user programs which attempt to write
into an unopened file or try to read from stdout, etc. Also, make sure to close
any files left open when the user program exits or is aborted.

Finally, please note that in order to have a “bullet-proof” kernel, all possible “bad”
things a user program may do (e.g. raising unsupported exceptions or providing
invalid arguments to system calls), must not disturb any kernel data structures,
nor any other processes. Instead, a misbehaving application must be properly
terminated and cleaned up. Try to make sure that your implementation takes
care of this as much as possible.

Deliverable 1: (30 points)

a) The extended source file exception.cc.
b) The extended source files addrspace.h and addrspace.cc.
c) A text file task1.txt that briefly outlines your implementation (i.e. status,

open issues, and decisions taken).

Task 2: Validate your implementation using simple test programs

To test your exception handling and the implemented system calls, create a set
of simple Nachos user programs as test cases and run them on your kernel. To
start, you may want to take a look at the few examples that are already provided
in the test directory. Your user programs should include:

(a) Program HelloWorld.c:
should print the string “Hello Nachos World” to the console and then
cleanly exit

(b) Program Echo.c:
should let the user type in a text string and echo it to the console when
the user hits enter; should repeat until the user enters “quit”

(c) Program List.c:
should ask the user for a file name and print the contents of that file to
the console; a non-existing file should be handled properly

You should also test if you kernel is “bullet-proof”. Create and run the following
“bad” examples:

(d) Program StoreAtZero.c:
tries to store the value 42 at memory address 0

(e) Program WriteToInvalidFile.c:
tries to write into an unopened file

(f) Program ReadFromStdout.c:
tries to read a string from the standard output stream

Deliverable 2: (30 points)

For each of the user programs listed above, submit the source file (e.g.
HelloWorld.c). Submit also a text file task2.txt with a brief explanation and
corresponding execution logs for each file. This should show that the program
successful runs (or successfully fails!) when running in your Nachos environment.

Submission instructions:

To submit your homework, send an email with subject “EECS 211 HW 4” to the
course instructor at doemer@uci.edu. Please include the deliverables listed
above as attachments.

To ensure proper credit, be sure to send your email before the deadline:
March 5, 2007, 11:59pm.

--
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

