
CAppendix

Windows 2000

The Microsoft Windows operating system is a 32-bit preemptive multitasking
operating system for Intel Pentium and later microprocessors. The successor
to the Windows NT operating system, it was previously named Windows NT
Version 5.0. Key goals for the system are portability, security, Portable Oper-
ating System Interface (POSIX or IEEE Std. 1003.1) compliance, multiprocessor
support, extensibility, international support, and compatibility with MS-DOS
and Microsoft Windows applications. In this appendix, we discuss the key
goals for this system, the layered architecture of the system that makes it so
easy to use, the file system, networks, and the programming interface.

C.1 History

In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating
system, which was written in assembly language for single-processor Intel
80286 systems. In 1988, Microsoft decided to make a fresh start and to develop
a “new technology” (or NT) portable operating system that supported both the
OS/2 and POSIX application programming interfaces (APIs). In October 1988,
Dave Cutler, the architect of the DEC VAX/VMS operating system, was hired
and given the charter of building this new operating system.

Originally, the team planned for NT to use the OS/2 API as its native
environment, but during development, it was changed to use the 32-bit
Windows API (or Win32 API), reflecting the popularity of Windows 3.0. The
first versions of NT were Windows NT 3.1 and Windows NT 3.1 Advanced
Server. (At that time, 16-bit Windows was at Version 3.1.) Windows NT 4.0
adopted the Windows 95 user interface and incorporated Internet web-server
and web-browser software. In addition, user-interface routines and graphics
code were moved into the kernel to improve performance, with the side effect of
decreased system reliability. Although previous versions of NT had been ported
to other microprocessor architectures, Windows discontinues that practice due
to marketplace factors. Thus, portability now refers to portability among Intel
architecture systems. Windows uses a microkernel architecture (like Mach),
so enhancements can be made to one part of the operating system without

901



902 Appendix C Windows 2000

greatly affecting other parts. With the addition of Terminal Services, Windows
is a multiuser operating system.

Windows was released in 2000 and incorporated significant changes. It
adds an X.500-based directory service, better networking support, support for
plug-and-play devices, a new file system with support for hierarchical storage,
and a distributed file system, as well as support for more processors and more
memory.

There are four versions of Windows. The Professional version is intended
for desktop use. The other three are server versions: Server, Advanced Server,
and Datacenter Server. These differ primarily in the amount of memory
and number of processors that they support. They use the same kernel and
operating-system code, but Windows Server and Advanced Server versions
are configured for client–server applications and can act as application servers
on NetWare and Microsoft LANs. Windows Datacenter Server now supports
up to 32 processors and up to 64 GB of RAM.

In 1996, more Windows NT Server licenses were sold than all versions of
UNIX licenses. Interestingly, the code base for Windows is on the order of 30
million lines of code. Compare this size with the code base of Windows NT 4.0:
about 18 million lines of code.

C.2 Design Principles

The design goals that Microsoft has stated for Windows include extensibility,
portability, reliability, compatibility, performance, and international support.

Extensibility refers to the capacity of an operating system to keep up
with advances in computing technology. So that changes are facilitated over
time, the developers implemented Windows using a layered architecture. The
Windows executive, which runs in kernel or protected mode, provides the basic
system services. On top of the executive, several server subsystems operate
in user mode. Among them are environmental subsystems that emulate
different operating systems. Thus, programs written for MS-DOS, Microsoft
Windows, and POSIX can all run on Windows in the appropriate environment.
(See Section C.4 for more information on environmental subsystems.) Because
of the modular structure, additional environmental subsystems can be added
without affecting the executive. In addition, Windows uses loadable drivers in
the I/O system, so new file systems, new kinds of I/O devices, and new kinds
of networking can be added while the system is running. Windows uses a
client–server model like the Mach operating system and supports distributed
processing by remote procedure calls (RPCs) as defined by the Open Software
Foundation.

An operating system is portable if it can be moved from one hardware
architecture to another with relatively few changes. Windows is designed to be
portable. As is true of the UNIX operating system, the majority of the system is
written in C and C++. All processor-dependent code is isolated in a dynamic link
library (DLL) called the hardware-abstraction layer (HAL). A DLL is a file that
is mapped into a process’s address space in such a way that any functions in
the DLL appear to be part of the process. The upper layers of Windows depend
on HAL, rather than on the underlying hardware, and that helps Windows to



C.3 System Components 903

be portable. HAL manipulates hardware directly, isolating the rest of Windows
from hardware differences among the platforms on which it runs.

Reliability is the ability to handle error conditions, including the ability of
the operating system to protect itself and its users from defective or malicious
software. Windows resists defects and attacks by using hardware protection
for virtual memory and software protection mechanisms for operating-system
resources. Also, Windows comes with a native file system—the NTFS file
system—that recovers automatically from many kinds of file-system errors
after a system crash. Windows NT 4.0 has a C-2 security classification from
the U.S. government, which signifies a moderate level of protection from
defective software and malicious attacks. For more information about security
classifications, see Section 18.8.

Windows provides source-level compatibility to applications that follow
the IEEE 1003.1 (POSIX) standard. Thus, these applications can be compiled to
run on Windows without changes to the source code. In addition, Windows
can run the executable binaries for many programs compiled for Intel X86
architectures running MS-DOS, 16-bit Windows, OS/2, LAN Manager, and 32-bit
Windows by using the environmental subsystems mentioned earlier. These
environmental subsystems support a variety of file systems, including the
MS-DOS FAT file system, the OS/2 HPFS file system, the ISO9660 CD file system,
and NTFS. Windows’s binary compatibility, however, is not perfect. In MS-DOS,
for example, applications can access hardware ports directly. For reliability and
security, Windows prohibits such access.

Windows is designed to afford good performance. The subsystems that
constitute Windows can communicate with one another efficiently through
a local procedure call (LPC) facility that provides high-performance message
passing. Except for the kernel, threads in the subsystems of Windows can
be preempted by higher-priority threads. Thus, the system can respond
quickly to external events. In addition, Windows is designed for symmetrical
multiprocessing; on a multiprocessor computer, several threads can run at the
same time. The current scalability of Windows is limited, compared with that
of UNIX.

Windows is also designed for international use. It provides support for
different locales via the national language support (NLS) API. NLS API provides
specialized routines to format dates, time, and money in accordance with
various national customs. String comparisons are specialized to account for
varying character sets. UNICODE is Windows’s native character code; Windows
supports ANSI characters by converting them to UNICODE characters before
manipulating them (8-bit to 16-bit conversion).

C.3 System Components

The architecture of Windows is a layered system of modules, as shown in
Figure C.1. The main layers are the HAL, the kernel, and the executive, all
of which run in protected mode, and a large collection of subsystems that
run in user mode. The user-mode subsystems are in two categories. The
environmental subsystems emulate different operating systems; the protection
subsystems provide security functions. One of the chief advantages of this type



904 Appendix C Windows 2000

OS/2
applications

OS/2
subsystem

Win16
applications

MSDOS
applications

Win18
VDM

object
manager

security
reference
monitor

process
manager window

manager

user mode

file system

I/O manager
plug and

play
manager

virtual
memory
manager

local
procedure

call
facility

MSDOS
VDM

Win32
subsystem

POSIX
subsystem

logon
process

security
subsystem

authentication
package

security account
manager database

Win32
applications

POSIX
applications

graphic
device
drivers

kernel

executive

hardware abstraction layer

hardware

cache
manager

device
drivers
network
drivers

Figure C.1 Windows block diagram.

of architecture is that interactions between modules can be kept simple. The
remainder of this section describes these layers and subsystems.

C.3.1 Hardware-Abstraction Layer

The HAL is the layer of software that hides hardware differences from upper
levels of the operating system to help make Windows portable. The HALexports
a virtual-machine interface that is used by the kernel, the executive, and the
device drivers. One advantage of this approach is that only a single version of
each device driver is needed—it can run on all hardware platforms without
porting the driver code. The HAL also provides the support for symmetric
multiprocessing. For performance reasons, I/O drivers (and graphics drivers
in Windows) can access the hardware directly.

C.3.2 Kernel

The kernel of Windows provides the foundation for the executive and the
subsystems. The kernel is never paged out of memory, and its execution is never
preempted. It has four main responsibilities: thread scheduling, interrupt and
exception handling, low-level processor synchronization, and recovery after a
power failure. We examine each of these below.

The kernel is object oriented. An object type in Windows is a system-
defined data type that has a set of attributes (or data values) and a set of



C.3 System Components 905

methods (that is, functions or operations). An object is just an instance of a
particular object type. The kernel performs its job by using a set of kernel
objects whose attributes store the kernel data and whose methods perform the
kernel activities.

The kernel uses two sets of objects: dispatcher objects and control objects.
Dispatcher objects control dispatching and synchronization in the system.
Examples of these objects are events, mutants, mutexes, semaphores, threads,
and timers. The event object is used to record an event occurrence and to
synchronize the latter with some action. The mutant provides kernel-mode or
user-mode mutual exclusion with the notion of ownership. The mutex, which
is available only in kernel mode, provides deadlock-free mutual exclusion. A
semaphore object acts as a counter or gate to control the number of threads
that access some resource. The thread object is an entity that is run by the
kernel and is associated with a process object. Timer objects are used to keep
track of the time and to signal timeouts when operations take too long and
need to be interrupted.

The second set of kernel objects comprises the control objects. These
objects include asynchronous procedure calls, interrupts, power-notify objects,
power-status objects, process objects, and profile objects. The system uses an
asynchronous procedure call (APC) to break into an executing thread and to
call a procedure. The interrupt object binds an interrupt service routine to an
interrupt source. The system uses the power-notify object to call a specified
routine automatically after a power failure and the power-status object to
check whether the power has failed. A process object represents the virtual
address space and control information necessary to execute the set of threads
associated with a process. Finally, the system uses the profile object to measure
the amount of time used by a block of code.

C.3.2.1 Threads and Scheduling

Like many other modern operating systems, Windows uses the notions of
processes and threads for executable code. The process has a virtual-memory
address space, as well as information such as a base priority and an affinity
for one or more processors. Each process has one or more threads, which are
the units of execution dispatched by the kernel. Each thread has its own state,
including a priority, processor affinity, and accounting information.

The six possible thread states are ready, standby, running, waiting, transi-
tion, and terminated. Ready means waiting to run. The highest-priority ready
thread is moved to the standby state, which means that it will be the next thread
to run. In a multiprocessor system, one thread is kept in the standby state for
each processor. A thread is running when it is executing on a processor. It will
run until it is preempted by a higher-priority thread, until it terminates, until
its time quantum ends, or until it calls a blocking system call, such as for I/O.
A thread is in the waiting state when it is waiting for a signal such as an I/O
completion. A new thread is in the transition state while it is waiting for the
resources necessary for execution. A thread enters the terminated state when
it finishes execution.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes: The variable class
contains threads having priorities from 0 to 15, and the real-time class contains



906 Appendix C Windows 2000

threads with priorities ranging from 16 to 31. The dispatcher uses a queue for
each scheduling priority and traverses the set of queues from highest to lowest
until it finds a thread that is ready to run. If a thread has a particular processor
affinity but that processor is not available, the dispatcher will skip past it and
will continue looking for a thread that is ready to run. If no ready thread is
found, the dispatcher will execute a special thread called the idle thread.

When a thread’s time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread’s
priority tends to limit the CPU consumption of compute-bound threads. When
a variable-priority thread is released from a wait operation, the dispatcher
boosts the priority. The amount of the boost depends on what the thread was
waiting for; a thread that was waiting for keyboard I/O for example, would
get a large priority increase, whereas a thread waiting for a disk operation
would get a moderate one. This strategy tends to give good response times
to interactive threads that are using the mouse and windows. It also enables
I/O-bound threads to keep the I/O devices busy while permitting compute-
bound threads to use spare CPU cycles in the background. This strategy is used
by several time-sharing operating systems, including UNIX. In addition, the
current window with which the user is interacting receives a priority boost to
enhance its response time.

Scheduling can occur when a thread enters the ready or wait state, when
a thread terminates, or when an application changes a thread’s priority or
processor affinity. If a higher-priority real-time thread becomes ready while a
lower-priority thread is running, the lower-priority thread will be preempted.
This preemption gives a real-time thread preferential access to the CPU when the
thread needs such access. Windows is not a hard real-time operating system,
however, because it does not guarantee that a real-time thread will start to
execute within any particular time limit.

C.3.2.2 Exceptions and Interrupts

The kernel also provides trap handling for exceptions and interrupts that are
generated by hardware or software. Windows defines several architecture-
independent exceptions, including memory-access violation, integer overflow,
floating-point overflow or underflow, integer divide by zero, floating-point
divide by zero, illegal instruction, data misalignment, privileged instruction,
page read error, guard-page violation, paging file quota exceeded, debugger
breakpoint, and debugger single step.

The trap handler can handle simple exceptions; others are handled by the
kernel’s exception dispatcher. The exception dispatcher creates an exception
record that contains the reason for the exception and finds an exception handler
that can deal with it.

When an exception occurs in kernel mode, the exception dispatcher simply
calls a routine to locate the exception handler. If no handler is found, a fatal
system error occurs, and the user is left with the infamous “blue screen of
death” that signifies system failure.

Exception handling is more complex for user-mode processes, because an
environmental subsystem (such as the POSIX system) can set up a debugger
port and an exception port for every process that it creates. If a debugger



C.3 System Components 907

port is registered, the exception handler sends the exception to that port.
If the debugger port is not found or does not handle that exception, the
dispatcher then attempts to find an appropriate exception handler. If no
handler is found, the debugger is called again so that it can catch the error for
debugging. If no debugger is running, a message is then sent to the process’s
exception port to give the environmental subsystem a chance to translate the
exception. For example, the POSIX environment translates Windows exception
messages into POSIX signals before sending them to the thread that caused
the exception. Finally, if nothing else works, the kernel simply terminates the
process containing the thread that caused the exception.

The interrupt dispatcher in the kernel handles interrupts by calling either
an interrupt service routine (such as in a device driver) or an internal kernel
routine. The interrupt is represented by an interrupt object that contains all the
information needed to handle the interrupt. Using an interrupt object makes it
easy to associate interrupt service routines with an interrupt without having
to access the interrupt hardware directly.

Various processor architectures, such as Intel and DEC Alpha, have different
types and numbers of interrupts. For portability, the interrupt dispatcher maps
the hardware interrupts into a standard set. The interrupts are prioritized and
are serviced in priority order. There are 32 interrupt levels (IRQLs) in Windows.
Eight are reserved for the use of the kernel; the other 24 represent hardware
interrupts via the HAL (although most x86 systems use only 16 lines). The
Windows interrupts are defined in Figure C.2.

The kernel uses an interrupt dispatch table to bind each interrupt level
to a service routine. In a multiprocessor computer, Windows keeps a separate
interrupt dispatch table for each processor, and each processor’s IRQL can be set
independently to mask out interrupts. All interrupts that occur at a level equal
to or less than the IRQL of a processor are blocked until the IRQL is lowered
by a kernel-level thread. Windows takes advantage of this property to use
software interrupts to perform system functions. For instance, the kernel uses
software interrupts to start a thread dispatch, to handle timers, and to support
asynchronous operations.

interrupt levels types of interrupts

31 
30 
29

machine check or bus error
power fail

clock (used to keep track of time)
profile
traditional PC IRQ hardware interrupts
dispatch and deferred procedure call (DPC) (kernel)
asynchronous procedure call (APC)
passive

28 
27 

3–26 
2 
1 
0

interprocessor notification (request another processor
to act; e.g., dispatch a process or update the TLB)

Figure C.2 Windows interrupt request levels.



908 Appendix C Windows 2000

The kernel uses the dispatch interrupt to control thread context switching.
When the kernel is running, it raises the IRQL on the processor to a level
above the dispatch level. When the kernel determines that a thread dispatch is
required, the kernel generates a dispatch interrupt, but this interrupt is blocked
until the kernel finishes what it is doing and lowers the IRQL. At that point, the
dispatch interrupt can be serviced, so the dispatcher chooses a thread to run.

When the kernel decides that some system function should be executed
eventually, but not immediately, it queues a deferred procedure call (DPC)
object that contains the address of the function to be executed and generates
a DPC interrupt. When the IRQL of the processor drops low enough, the DPC
objects are executed. The IRQL of the DPC interrupt is typically higher than
that of user threads, so DPCs will interrupt the execution of user threads. To
avoid problems, DPCs are restricted to be fairly simple. They cannot modify
a thread’s memory; create, acquire, or wait on objects; call system services; or
generate page faults.

C.3.2.3 Low-Level Processor Synchronization

Another responsibility of the kernel is to provide low-level processor synchro-
nization. It does this by using asynchronous procedure calls (APCs). low-level
processor synchronization to APC mechanism.] The APC mechanism is similar
to the DPC mechanism but is used in a more general way. The APC mechanism
enables threads to set up a procedure call that will happen out of the blue
at some future time. For instance, many system services accept a user-mode
routine as a parameter. Instead of calling a synchronous system call that will
block the thread until the system call completes, a user thread can call an
asynchronous system call and supply an APC. The user thread will continue
running. When the system service finishes, the user thread will be interrupted
to run the APC spontaneously.

An APC can be queued on either a system thread or a user thread, although
a user-mode APC will be executed only if the thread has declared itself to be
alertable. An APC is more powerful than a DPC, in that it can acquire and wait
on objects, cause page faults, and call system services. Since an APC executes
in the address space of the target thread, the Windows executive uses APCs
extensively for I/O processing.

Windows can run on symmetric multiprocessor machines, so the kernel
must prevent two of its threads from modifying a shared data structure at
the same time. The kernel uses spinlocks that reside in global memory to
achieve multiprocessor mutual exclusion. Because all activity on a processor
stops when a thread is attempting to acquire a spinlock, a thread that holds a
spinlock is not preempted, so it can finish and release the lock as quickly as
possible.

C.3.2.4 Recovery After a Power Failure

The final responsibility of the kernel is to provide recovery after a power
failure. A power-fail interrupt, which has the second-highest priority, notifies
the operating system whenever a power loss is detected. The power-notify
object provides a way for a device driver to register a routine that will be called
when the power is restored to ensure that devices are set to the proper state
on recovery. For battery–backed-up systems, the power-status object is useful.



C.3 System Components 909

Before it begins a critical operation, a driver examines the power-status object
to determine whether or not the power has failed. If the driver determines
that power has not failed, it raises the IRQL of its processor to power-fail,
performs the operation, and resets the IRQL. This sequence of actions blocks
the power-fail interrupt until after the critical operation completes.

C.3.3 Executive

The Windows executive provides a set of services that all environmental
subsystems can use. The services are grouped as follows: object manager,
virtual-memory manager, process manager, local-procedure-call facility, I/O
manager, security reference monitor, and plug-and-play manager.

C.3.3.1 Object Manager

As an object-oriented system, Windows uses objects for all its services and
entities. Examples of objects are directory objects, symbolic link objects,
semaphore objects, event objects, process and thread objects, port objects, and
file objects. The job of the object manager is to supervise the use of all objects.
When a thread wants to use an object, it calls the object manager’s openmethod
to get a handle to the object. Handles provide a standardized interface to all
kinds of objects. Like a file handle, an object handle is an identifier unique to a
process that confers the ability to access and manipulate a system resource.

Since the object manager is the only entity that can generate an object
handle, it is the natural place to check security. For instance, the object manager
checks whether a process has the right to access an object when the process
tries to open that object. The object manager can also enforce quotas, such as
the maximum amount of memory that a process may allocate.

The object manager can keep track of which processes are using each
object. Each object header contains a count of the number of processes that
have handles to that object. When the counter goes to zero, the object is deleted
from the name space (if it is a temporary object, rather than a permanent one, as
explained below). Since Windows itself often uses pointers (instead of handles)
to access objects, the object manager also maintains a reference count, which
it increments when Windows gains access to an object and decrements when
the object is no longer needed. When the reference count of a temporary object
goes to zero, the object is deleted from memory. Permanent objects represent
physical entities, such as disk drives, and are not deleted when the reference
count and the open-handle counter go to zero.

The objects are manipulated by a standard set of methods: create, open,
close, delete, query name, parse, and security. The latter three objects
need explanation:

• query name is called when a thread has a handle to an object but wants to
know the object’s name.

• parse is used by the object manager to search for an object given the
object’s name.

• security is called when a process opens or changes the protection of an
object.



910 Appendix C Windows 2000

The Windows executive allows any object to be given a name. The name
space is global, so one process can create a named object, and a second process
can then open a handle to the object and share it with the first process. A process
opening a named object can ask for the search to be either case sensitive or case
insensitive.

A name can be either permanent or temporary. A permanent name
represents an entity, such as a disk drive, that remains even if no process is
accessing it. A temporary name exists only while some process holds a handle
to that object.

Although the name space is not directly visible across a network, the
object manager’s parse method is used to help access a named object on
another system. When a process attempts to open an object that resides on a
remote computer, the object manager calls the parse method, which then calls
a network redirector to find the object.

Object names are structured like file path names in MS-DOS and UNIX.
Directories are represented by a directory object that contains the names of all
the objects in that directory. The object name space can grow by the addition
of object domains, which are self-contained sets of objects. Examples of object
domains are floppy disks and hard drives. It is easy to see how the name space
is extended when a floppy disk is added to the system: The floppy has its own
name space, which is grafted onto the existing name space.

UNIX file systems have symbolic links, so multiple nicknames or aliases
can refer to the same file. Similarly, Windows implements a symbolic link
object. One way in which Windows uses symbolic links is to map drive names
to the standard MS-DOS drive letters. The drive letters are just symbolic links
that can be remapped to suit the user’s preferences.

A process gets an object handle by creating an object, by opening an existing
object, by receiving a duplicated handle from another process, or by inheriting
a handle from a parent process, similar to the way a UNIX process gets a file
descriptor. These handles are all stored in the process’s object table. An entry
in the object table contains the object’s access rights and states whether the
handle should be inherited by child processes. When a process terminates,
Windows automatically closes all the process’s open handles.

When a user is authenticated by the login process, an access-token object
is attached to the user’s process. The access token contains information such
as the security ID, group IDs, privileges, primary group, and default access
control list. These attributes determine which services and objects can be used
by a given user.

In Windows, each object is protected by an access-control list that contains
the security IDs and access rights granted to each process. When a process
attempts to access an object, the system compares the security ID in the process’s
access token with the object’s access-control list to determine whether access
should be permitted. This check is done only when an object is opened, so
internal Windows services that use pointers, rather than opening a handle to
an object, bypass the access check.

Generally, the creator of the object determines the access-control list for
that object. If none is supplied explicitly, one may be inherited from the creator
object, or a default list may be obtained from the user’s access-token object.

One field in the access token controls auditing of the object. Operations that
are being audited are logged to the system’s audit log with an identification of



C.3 System Components 911

the user. The audit field can watch this log to discover attempts to break into
the system or to access protected objects.

C.3.3.2 Virtual-Memory Manager

The virtual-memory portion of the Windows executive is the virtual-memory
(VM) manager. The design of the VM manager assumes that the underlying
hardware supports virtual-to-physical mapping, a paging mechanism, and
transparent cache coherence on multiprocessor systems and allows multiple
page-table entries to map to the same page frame. The VM manager in Windows
uses a page-based management scheme with a page size of 4 KB. Pages of data
that are assigned to a process but are not in physical memory are stored in the
paging file on disk.

The VM manager uses 32-bit addresses, so each process has a 4-GB virtual
address space. The upper 2 GB are identical for all processes and are used by
Windows in kernel mode. The lower 2 GB are distinct for every process and
are accessible by both user- and kernel-mode threads. Certain configurations
of Windows reserve only 1 GB for operating system use, allowing a process to
use 3 GB of address space.

The Windows VM manager uses a two-step process to allocate memory.
The first step reserves a portion of the process’s address space. The second step
commits the allocation by assigning space in the Windows paging file. Windows
can limit the amount of paging file space that a process consumes by enforcing
a quota on committed memory. A process can uncommit memory that it is
no longer using to free up its paging quota. Since memory is represented by
objects, when one process (the parent) creates a second process (the child),
the parent can maintain the ability to access the virtual memory of the child.
That is how environmental subsystems can manage the memory of their client
processes. For performance, the VM manager allows a privileged process to
lock selected pages in physical memory, thus ensuring that the pages will not
be swapped out to the paging file.

Two processes can share memory by getting handles to the same memory
object, but this approach can be inefficient, since the entire memory space of an
object must be committed before either process can access that object. Windows
provides an alternative, called a section object, to represent a block of shared
memory. After getting a handle to a section object, a process can map only
the needed portion of the memory. This portion is called a view. The view
mechanism also enables a process to access an object that is too large to fit into
the process’s paging file quota. The system can use the view to walk through
the address space of the object, one piece at a time.

A process can control the use of a shared-memory section object in many
ways. The maximum size of a section can be bounded. The section can be
backed by disk space either in the system paging file or by a regular file (a
memory-mapped file). A section can be based, meaning that the section appears
at the same virtual address for all processes that access it. Finally, the memory
protection of pages in the section can be set to read only, read–write, execute
only, guard page, or copy on write. The last two of these protection settings
need some explanation:



912 Appendix C Windows 2000

page-
table
entry

0

page-
table
entry
1023

page
table 0

…

…

page
table 1023

…

page-
table
entry

0

page-
table
entry
1023

page-
directory

entry
0

page-
directory

entry
1023

page
directory

4K
page

4K
page

4K
page

4K
page

Figure C.3 Virtual-memory layout.

• A guard page raises an exception if accessed; the exception can be used,
for example, to check whether a faulty program iterates beyond the end of
an array.

• The copy-on-write mechanism allows the VM manager to save memory.
When two processes want independent copies of an object, the VM manager
places only one shared copy into physical memory, but it sets the copy-on-
write property on that region of memory. If one of the processes tries to
modify data in a copy-on-write page, the VM manager first makes a private
copy of the page for that process to use.

The virtual-address translation in Windows uses several data structures. Each
process has a page directory that contains 1,024 page-directory entries of size
4 bytes. Typically, the page directory is private, but it can be shared among
processes if the environment so requires. Each page-directory entry points to
a page table that contains 1,024 page-table entries (PTEs) of size 4 bytes. Each
PTE points to a 4-KB page frame in physical memory. The total size of all the
page tables for a process is 4 MB, so the VM manager will swap out these tables
to disk when necessary. See Figure C.3 for a diagram of this structure.

A 10-bit integer can represent all the values from 0 to 1,023. Thus, a 10-bit
integer can select any entry in the page directory or in a page table. This
property is used when a virtual-address pointer is translated to a byte address
in physical memory. A 32-bit virtual-memory address is split into three integers,
as shown in Figure C.4. The first 10 bits of the virtual address are used as a
subscript in the page directory. This address selects one page-directory entry,
which points to a page table. The memory management unit (MMU) uses the
next 10 bits of the virtual address to select a PTE from that page table. The
PTE points to a page frame in physical memory. The remaining 12 bits of the
virtual address point to a specific byte in that page frame. The MMU creates a



C.3 System Components 913

PDE PTE page offset

31 0

Figure C.4 Virtual-to-physical address translation.

pointer to that specific byte in physical memory by concatenating 20 bits from
the PTE with the lower 12 bits from the virtual address. Thus, the 32-bit PTE
has 12 bits left over; these bits describe the page. The Pentium PTE reserves 3
bits for the use of the operating system. The rest of the bits specify whether
the page is dirty, accessed, cacheable, read only, write through, kernel mode,
or valid; thus, they describe the state of the page in memory. For more general
information on paging schemes, see Section 8.4.

A page can be in one of six states: valid, free, zeroed, standby, modified, or
bad. A valid page is in use by an active process. A free page is a page that is not
referenced in a PTE. A zeroed page is a free page that has been zeroed out and is
ready for immediate use. A standby page has been removed from the working
set of a process. A modified page has been written to, but not yet flushed to,
disk. Standby and modified pages are considered to be transition pages. Finally,
a bad page is unusable because a hardware error has been detected.

The actual structure of the page-file PTE is shown in Figure C.5. The PTE
contains 5 bits for page protection, 20 bits for page-file offset, 4 bits to select
the paging file, and 3 bits that describe the page state. This page-file PTE would
appear as an invalid page to the hardware. Since executable code and memory-
mapped files already have a copy on disk, they do not need space in a paging
file. If one of these pages is not in physical memory, the PTE structure is as
follows: The most significant bit is used to specify the page protection, the next
28 bits are used to index into a system data structure that indicates a file and
offset within the file for the page, and the lower 3 bits specify the page state.

It is difficult for processes to share a page if every process has its own set
of page tables, because each process will have its own PTE for the page frame.
When a shared page is faulted into physical memory, the physical address
will have to be stored in the PTEs of each process that shares the page. The
protection bits and page-state bits in these PTEs will all need to be set and
updated consistently. To avoid these problems, Windows uses an indirection.
For every page that is shared, the process has a PTE that points to a prototype

page address protectionT P V
page
file

31 0

Figure C.5 Page file page-table entry.



914 Appendix C Windows 2000

page-table entry, rather than to the page frame. The prototype PTE contains the
page-frame address and the protection and state bits. Thus, the first access by
a process to a shared page generates a page fault. After the first access, further
accesses are performed in the normal manner. If the page is marked read-only,
the VM manager does a copy-on-write, and the process effectively does not
have a shared page any longer. Shared pages never appear in the page file but
are instead found in the file system.

The VM manager keeps track of all pages of physical memory in a page-
frame database. There is one entry for every page frame. The entry points to
the PTE that points to the page frame, so the VM manager can maintain the
state of the page. Page frames are linked to form, for instance, the list of zeroed
pages and the list of free pages.

When a page fault occurs, the VM manager faults in the missing page,
placing that page into the first frame on the free list. But it does not stop
there. Research shows that the memory referencing of a thread tends to have
a locality property: When a page is used, it is likely that adjacent pages will
be referenced in the near future. (Think of iterating over an array or fetching
sequential instructions that form the executable code for a thread.) Because of
locality, when the VM manager faults in a page, it also faults in a few adjacent
pages. This adjacent faulting tends to reduce the total number of page faults.
For more information on locality, see Section 9.6.1.

If no page frames are available on the free list, Windows uses a per-process
FIFO replacement policy to take pages from processes that are using more than
their minimum working-set size. Windows monitors the page faulting of each
process that is at its minimum working-set size and adjusts the working-set
size accordingly. Specifically, when a process is started under Windows, it is
assigned a default working-set size of 30 pages. Windows periodically tests
this size by stealing a valid page from the process. If the process continues
executing without generating a page fault for the stolen page, the working set
of the process is reduced by 1, and the page is added to the list of free pages.

C.3.3.3 Process Manager

The Windows process manager provides services for creating, deleting, and
using threads and processes. It has no knowledge about parent–child rela-
tionships or process hierarchies; those refinements are left to the particular
environmental subsystem that owns the process.

An example of process creation in the Win32 environment is as follows:
When a Win32 application calls CreateProcess, a message is sent to the Win32
subsystem, which calls the process manager to create a process. The process
manager calls the object manager to create a process object and then returns
the object handle to Win32. Win32 calls the process manager again to create a
thread for the process, and finally Win32 returns handles to the new process
and thread.

C.3.3.4 Local Procedure Call Facility

The operating system uses the local procedure call (LPC) facility to pass
requests and results between client and server processes within a single
machine. In particular, it uses LPC to request services from the various Windows
subsystems. LPC is similar in many respects to the RPC mechanisms that are



C.3 System Components 915

used by many operating systems for distributed processing across networks,
but LPC is optimized for use within one Windows system.

LPC is a message-passing mechanism. The server process publishes a
globally visible connection-port object. When a client wants services from a
subsystem, it opens a handle to the subsystem’s connection-port object and then
sends a connection request to that port. The server creates a channel and returns
a handle to the client. The channel consists of a pair of private communication
ports: one for client-to-server messages and the other for server-to-client
messages. Communication channels support a callback mechanism, so the
client and server can accept requests when they would normally be expecting
a reply.

When an LPC channel is created, one of three message-passing techniques
must be specified.

1. The first technique is suitable for small messages (up to 256 bytes). In this
case, the port’s message queue is used as intermediate storage, and the
messages are copied from one process to the other.

2. The second technique is for larger messages. In this case, a shared-
memory section object is created for the channel. Messages sent through
the port’s message queue contain a pointer and size information that refer
to the section object. Thus, the need to copy large messages is avoided:
The sender places data into the shared section, and the receiver can view
them directly.

3. The third technique of LPC message passing, called quick LPC, is used
by graphical display portions of the Win32 subsystem. When a client
asks for a connection that will use quick LPC, the server sets up three
objects: a dedicated server thread to handle requests, a 64-KB section
object, and an event-pair object. An event-pair object is a synchronization
object that is used by the Win32 subsystem to provide notification when
the client thread has copied a message to the Win32 server, or vice versa.
LPC messages are passed in the section object, and synchronization is
performed by the event-pair object. Quick LPC has several advantages.
The section object eliminates message copying, since it represents a region
of shared memory. The event-pair object eliminates the overhead of using
the port object to pass messages containing pointers and lengths. The
dedicated server thread eliminates the overhead of determining which
client thread is calling the server, since there is one server thread per
client thread. Finally, the kernel gives scheduling preference to these
dedicated server threads to improve performance. The drawback is that
quick LPC uses more resources than do the other two methods, so the
Win32 subsystem uses quick LPC only for the window-manager and
graphics-device interfaces.

C.3.3.5 I/O Manager

The I/O manager is responsible for file systems, cache management, device
drivers, and network drivers. It keeps track of which installable file systems
are loaded and manages buffers for I/O requests. It works with the VM manager
to provide memory-mapped file I/O and controls the Windows cache manager,



916 Appendix C Windows 2000

which handles caching for the entire I/O system. The I/O manager supports
both synchronous and asynchronous operations, provides timeouts for drivers,
and has mechanisms for one driver to call another.

The I/O manager converts the requests it receives into a standard form
called an I/O request packet (IRP). It then forwards the IRP to the correct driver
for processing. When the operation is finished, the I/O manager receives the
IRP from the driver that most recently performed an operation and completes
the request.

In many operating systems, caching is done by the file system. Windows
uses a centralized caching facility instead. The cache manager provides cache
services for all components under the control of the I/O manager and works
closely with the VM manager. The size of the cache changes dynamically,
according to how much free memory is available in the system. Recall that
the upper 2 GB of a process’s address space comprise the system area; it is
identical for all processes. The VM manager allocates up to one-half of this
space to the system cache. The cache manager maps files into this address
space and uses the capabilities of the VM manager to handle file I/O.

The cache is divided into blocks of 256 KB. Each cache block can hold a view
(that is, a memory-mapped region) of a file. Each cache block is described by
a virtual-address control block (VACB) that stores the virtual address and file
offset for that view, as well as the number of processes that are using the view.
The VACBs reside in a single array that is maintained by the cache manager.

For each open file, the cache manager maintains a separate VACB index
array. This array has an element for each 256-KB chunk of the file; so, for
instance, a 2-MB file would have an 8-entry VACB index array. An entry in the
VACB index array points to the VACB if that portion of the file is in the cache; it
is null otherwise.

When the I/O manager receives a user-level read request, it sends an IRP
to the cache manager (unless the request specifically asks for a noncached
read). The cache manager calculates which entry of that file’s VACB index array
corresponds to the byte offset of the request. The entry either points to the view
in the cache or is null. If it is null, the cache manager allocates a cache block
(and the corresponding entry in the VACB array) and maps the view into that
cache block. The cache manager then attempts to copy data from the mapped
file to the caller’s buffer. If the copy succeeds, the operation is completed. If
the copy fails, it does so because of a page fault, which causes the VM manager
to send a noncached read request to the I/O manager. The I/O manager asks
the appropriate device driver to read the data and returns the data to the VM
manager, which loads the data into the cache. The data, now in the cache, are
copied to the caller’s buffer, and the I/O request is completed. Figure C.6 shows
an overview of all these operations. When possible, for synchronous, cached,
nonlocking I/O, I/O is handled by the fast I/O mechanism. This mechanism
simply copies data to or from cache pages directly and utilizes the cache
manager to perform any needed I/O.

A kernel-level read operation is similar, except that the data can be accessed
directly from the cache, rather than being copied to a buffer in user space.
To use file-system metadata, or data structures that describe the file system,
the kernel uses the cache manager’s mapping interface to read the metadata.
To modify the metadata, the file system uses the cache manager’s pinning
interface. Pinning a page locks the page into a physical-memory page frame,



C.3 System Components 917

cache manager

VM manager

process

file system

disk driver

noncached I/O

I/O manager

data copy

cached I/O

page fault

I/O

Figure C.6 File I/O.

so the VM manager cannot move or swap out the page. After updating the
metadata, the file system asks the cache manager to unpin the page. Since the
page has been modified, it is marked dirty, so the VM manager will flush the
page to disk. Note that the metadata is actually stored in a regular file.

To improve performance, the cache manager keeps a small history of read
requests and attempts to predict future requests. If the cache manager can find
a pattern in the previous three requests, such as sequential access forward
or backward, it can prefetch data into the cache before the next request is
submitted by the application. Then, the application may find its data already
in the cache and may not need to wait for disk I/O. The Win32 API OpenFile
and CreateFile functions can be passed the FILE FLAG SEQUENTIAL SCANflag,
which is a hint to the cache manager to try to prefetch 192 KB ahead of the
thread’s requests. Typically, Windows performs I/O operations in chunks of 64
KB or 16 pages; thus, this read-ahead is three times the normal amount.

The cache manager is also responsible for telling the VM manager to flush
the contents of the cache. The cache manager’s default behavior is write-back
caching: It accumulates writes for 4 to 5 seconds, and then the cache-writer
thread wakes up. When write-through caching is needed, a process can set
a flag when opening the file, or the process can call an explicit cache-flush
function when needed.

A fast-writing process could potentially fill all the free cache pages before
the cache-writer thread had a chance to wake up and flush the pages to disk.
The cache writer prevents a process from flooding the system in the following
way: When the amount of free cache memory becomes low, the cache manager
temporarily blocks processes that attempt to write data and wakes the cache-
writer thread to flush pages to disk. If the fast-writing process is actually a
network redirector for a network file system, blocking it for too long could
cause network transfers to time out and be retransmitted. This retransmission
would waste network bandwidth. To prevent this waste, network redirectors
can tell the cache manager not to let a large backlog of writes accumulate in
the cache.



918 Appendix C Windows 2000

Because a network file system needs to move data between a disk and the
network interface, the cache manager also provides a DMA interface to move
the data directly. Moving data directly avoids the need to copy data through
an intermediate buffer.

C.3.3.6 Security Reference Monitor

The object-oriented nature of Windows enables it to use a uniform mechanism
to perform run-time access validation and audit checks for every entity in the
system. Whenever a process opens a handle to an object, the security reference
monitor checks the process’s security token and the object’s access-control list
to see whether the process has the necessary rights.

C.3.3.7 Plug-and-Play Manager

The operating system uses the plug-and-play (PnP) manager to recognize
and adapt to changes in the hardware configuration. For PnP to work, both
the device and the driver must support the PnP standard. The PnP manager
automatically recognizes installed devices and detects changes in devices as
the system operates. The manager also keeps tracks of resources used by a
device, as well as potential resources that could be used, and takes care of
loading the appropriate drivers. This management of hardware resources—
primarily interrupts and I/O memory ranges—has the goal of determining a
hardware configuration in which all devices are able to operate. For example,
if device B can use only interrupt 5 but device A could use 5 or 7, then the
PnP manager could assign 5 to B and 7 to A. In previous versions, the user
might have had to remove device A and reconfigure it to use interrupt 7
before installing device B. The user thus had to study system resources before
installing new hardware and had to determine which devices were using which
hardware resources. The proliferation of PCCARD and USB devices also dictates
that dynamic configuration of resources be supported.

The PnP manager handles dynamic reconfiguration as follows. First, it
gets a list of devices from each bus driver (for example, PCI, USB). It then
loads the installed driver (or installs one, if necessary) and sends an add-
device command to the appropriate driver for each device. The PnP manager
figures out the optimal resource assignments and then sends a start-device
command to each driver along with the resource assignment for that device.
If a device needs to be reconfigured, the PnP manager sends a query-stop
command that asks the driver whether the device can be temporarily disabled.
If the driver can disable the device, then all pending operations are completed,
and no new operations are allowed to start. Next, the PnP manager sends a
stop command; it can then reconfigure the device with another start-device
command.

The PnP manager also supports other commands, such as query-remove.
This command is used when the user is getting ready to eject a PCCARD
device and operates in a fashion similar to query-stop. The surprise-remove
command is used when a device fails or, more likely, when a user removes a
PCCARD device without using the PCCARD utility to stop it first. The remove
command requests that the driver stop using the device and release all
resources that have been allocated to the device.



C.4 Environmental Subsystems 919

C.4 Environmental Subsystems

Environmental subsystems are user-mode processes layered over the native
Windows executive services to enable Windows to run programs developed
for other operating systems, including 16-bit Windows, MS-DOS, POSIX, and
character-based applications for 16-bit OS/2. Each environmental subsystem
provides one API or application environment.

Windows uses the Win32 subsystem as the main operating environment;
thus, this subsystem starts all processes. When an application is executed, the
Win32 subsystem calls the VM manager to load the application’s executable
code. The memory manager returns a status to Win32 that tells what kind
of executable the code is. If it is not a native Win32 executable, the Win32
environment checks whether the appropriate environmental subsystem is
running; if the subsystem is not running, it is started as a user-mode process.
Then, Win32 creates a process to run the application and passes control to the
environmental subsystem.

The environmental subsystem uses the Windows LPC facility to get kernel
services for the process. This approach helps Windows to be robust, because
the parameters passed to a system call can be checked for correctness before the
actual kernel routine is invoked. Windows prohibits applications from mixing
API routines from different environments. For instance, a Win32 application
cannot call a POSIX routine.

Since each subsystem is run as a separate user-mode process, a crash in
one has no effect on the others. The exception is Win32, which provides all the
keyboard, mouse, and graphical display capabilities. If it fails, the system is
effectively disabled.

The Win32 environment categorizes applications as either graphical or
character based, where a character-based application is one that thinks that
interactive output goes to an 80-by-24 ASCII display. Win32 transforms the
output of a character-based application to a graphical representation in
a window. This transformation is easy: Whenever an output routine is
called, the environmental subsystem calls a Win32 routine to display the text.
Since the Win32 environment performs this function for all character-based
windows, it can transfer screen text between windows via the clipboard.
This transformation works for MS-DOS applications, as well as for POSIX
command-line applications.

C.4.1 MS-DOS Environment

The MS-DOS environment does not have the complexity of the other Windows
environmental subsystems. It is provided by a Win32 application called the
virtual DOS machine (VDM). Since the VDM is just a user-mode process, it
is paged and dispatched like any other Windows thread. The VDM has an
instruction-execution unit to execute or emulate Intel 486 instructions. The
VDM also provides routines to emulate the MS-DOS ROM BIOS and “int 21”
software-interrupt services, and it has virtual device drivers for the screen,
keyboard, and communication ports. The VDM is based on the MS-DOS 5.0
source code; it gives the application at least 620 KB of memory.

The Windows command shell is a program that creates a window that
looks like an MS-DOS environment. It can run both 16-bit and 32-bit executables.



920 Appendix C Windows 2000

When an MS-DOS application is run, the command shell starts a VDM process
to execute the program.

If Windows is running on an x86 processor, MS-DOS graphical applications
run in full-screen mode, and character applications can run full screen or in
a window. If Windows is running on a different processor architecture, all
MS-DOS applications run in windows. Some MS-DOS applications access the
disk hardware directly, but they fail to run on Windows because disk access
is privileged to protect the file system. In general, MS-DOS applications that
directly access hardware will fail to operate under Windows.

Since MS-DOS is not a multitasking environment, some applications have
been written that hog the CPU—for instance, by using busy loops to cause time
delays or pauses in execution. The priority mechanism in the Windows dis-
patcher detects such delays and automatically throttles the CPU consumption
(and causes the offending application to operate incorrectly).

C.4.2 16-Bit Windows Environment

The Win16 execution environment is provided by a VDM that incorporates
additional software, called Windows on Windows, that provides the Windows
3.1 kernel routines and stub routines for window-manager and graphical-
device-interface (GDI) functions. The stub routines call the appropriate Win32
subroutines—converting, or thunking, 16-bit addresses into 32-bit ones. Appli-
cations that rely on the internal structure of the 16-bit window manager or GDI
may not work, because Windows on Windows does not really implement the
16-bit API.

Windows on Windows can multitask with other processes on Windows, but
it resembles Windows 3.1 in many ways. Only one Win16 application can run at a
time, all applications are single threaded and reside in the same address space,
and all share the same input queue. These features imply that an application
that stops receiving input will block all the other Win16 applications, just as
in Windows 3.x, and one Win16 application can crash other Win16 applications
by corrupting the address space. Multiple Win16 environments can coexist,
however, by using the command start /separate win16application from the
command line.

C.4.3 Win32 Environment

As mentioned earlier, the main subsystem in Windows is the Win32 subsystem.
It runs Win32 applications and manages all keyboard, mouse, and screen I/O.
Since it is the controlling environment, it is designed to be extremely robust.
Several features of Win32 contribute to this robustness. Unlike processes in the
Win16 environment, each Win32 process has its own input queue. The window
manager dispatches all input on the system to the appropriate process’s input
queue, so a failed process will not block input to other processes. The Windows
kernel also provides preemptive multitasking, which enables the user to
terminate applications that have failed or are no longer needed. In addition,
Win32 validates all objects before using them, to prevent crashes that could
otherwise occur if an application tried to use an invalid or wrong handle. The
Win32 subsystem verifies the type of the object to which a handle points before
using that object. The reference counts kept by the object manager prevent



C.5 File System 921

objects from being deleted while they are still being used and prevent their use
after they have been deleted.

C.4.4 POSIX Subsystem

The POSIX subsystem is designed to run POSIX applications following the
POSIX.1 standard, which is based on the UNIX model. POSIX applications can
be started by the Win32 subsystem or by another POSIX application. POSIX
applications use the POSIX subsystem server PSXSS.EXE, the POSIX dynamic
link library PSXDLL.DLL, and the POSIX console session manager POSIX.EXE.

Although the POSIX standard does not specify printing, POSIX applications
can use printers transparently via the Windows redirection mechanism. POSIX
applications have access to any file system on the Windows system; the
POSIX environment enforces UNIX-like permissions on directory trees. Several
Win32 facilities are not supported by the POSIX subsystem, including memory-
mapped files, networking, graphics, and dynamic data exchange.

C.4.5 OS/2 Subsystem

Although Windows was originally intended to provide a robust OS/2 operating
environment, the success of Microsoft Windows led to a change; during
the early development of Windows, the Windows environment became the
default. Consequently, Windows provides only limited facilities in the OS/2
environmental subsystem. OS/2 1.x character-based applications can run only
on Windows on Intel x86 computers. Real-mode OS/2 applications can run on
all platforms by using the MS-DOS environment. Bound applications, which
have dual code for both MS-DOS and OS/2, run in the OS/2 environment unless
the OS/2 environment is disabled.

C.4.6 Logon and Security Subsystems

Before a user can access objects on Windows, that user must be authenticated
by the logon subsystem. To be authenticated, a user must have an account and
provide the password for that account.

The security subsystem generates access tokens to represent users on
the system. It calls an authentication package to perform authentication
using information from the logon subsystem or network server. Typically,
the authentication package simply looks up the account information in a local
database and checks to see that the password is correct. The security subsystem
then generates the access token for the user ID containing the appropriate
privileges, quota limits, and group IDs. Whenever the user attempts to access
an object in the system, such as by opening a handle to the object, the access
token is passed to the security reference monitor, which checks privileges and
quotas. The default authentication package for Windows domains is Kerberos.

C.5 File System

Historically, MS-DOS systems have used the file-allocation table (FAT) file
system. The 16-bit FAT file system has several shortcomings, including internal
fragmentation, a size limitation of 2 GB, and a lack of access protection for files.



922 Appendix C Windows 2000

The 32-bit FAT file system has solved the size and fragmentation problems,
but its performance and features are still weak by comparison with modern
file systems. The NTFS file system is much better. It was designed to include
many features, including data recovery, security, fault tolerance, large files and
file systems, multiple data streams, UNICODE names, and file compression. For
compatibility, Windows provides support for both the FAT and OS/2 HPFS file
systems. However, we focus here on NTFS, the basic Windows file system.

C.5.1 Internal Layout

The fundamental entity in NTFS is a volume. A volume is created by the
Windows disk administrator utility and is based on a logical disk partition.
The volume may occupy a portion of a disk, may occupy an entire disk, or may
span across several disks.

NTFS does not deal with individual sectors of a disk but instead uses the
cluster as the unit of disk allocation. A cluster is a number of disk sectors
that is a power of 2. The cluster size is configured when an NTFS file system
is formatted. The default cluster size is the sector size for volumes up to 512
MB, 1 KB for volumes up to 1 GB, 2 KB for volumes up to 2 GB, and 4 KB for
larger volumes. This cluster size is much smaller than that for the 16-bit FAT file
system, and the small size reduces the amount of internal fragmentation. As
an example, consider a 1.6-GB disk with 16,000 files. If you use a 16-bit FAT file
system, 400 MB may be lost to internal fragmentation because the cluster size
is 32 KB. Under NTFS, only 17 MB would be lost when storing the same files.

NTFS uses logical cluster numbers (LCNs) as disk addresses. It assigns them
by numbering clusters from the beginning of the disk to the end. Using this
scheme, the system can calculate a physical disk offset (in bytes) by multiplying
the LCN by the cluster size.

A file in NTFS is not a simple byte stream, as it is in MS-DOS or UNIX;
rather, it is a structured object consisting of attributes. Each attribute of a file
is an independent byte stream that can be created, deleted, read, and written.
Some attributes are standard for all files, including the file name (or names, if
the file has aliases), the creation time, and the security descriptor that specifies
access control. Other attributes are specific to certain kinds of files. For instance,
Macintosh files have two data attributes, the resource fork and the data fork.
A directory has attributes that implement an index for the file names in the
directory. In general, attributes may be added as necessary and are accessed
using a file-name:attribute nomenclature. Most traditional data files have an
unnamed data attribute that contains all that file’s data. Note that NTFS only
returns the size of the unnamed attribute in response to file-query operations,
such as when running the dir command. Clearly, some attributes are small,
and others are large.

Every file in NTFS is described by one or more records in an array stored in a
special file called the master file table (MFT). The size of a record is determined
when the file system is created; it ranges from 1 to 4 KB. Small attributes
are stored in the MFT record itself and are called resident attributes. Large
attributes, such as the unnamed bulk data, are called nonresident attributes;
they are stored in one or more contiguous extents on the disk, and a pointer to
each extent is stored in the MFT record. For a tiny file, even the data attribute
may fit inside the MFT record. If a file has many attributes—or if it is highly



C.5 File System 923

fragmented, so that many pointers are needed to point to all the fragments
—one record in the MFT might not be large enough. In this case, the file is
described by a record called the base file record, which contains pointers to
overflow records that hold the additional pointers and attributes.

Each file in an NTFS volume has a unique ID called a file reference. The file
reference is a 64-bit quantity that consists of a 48-bit file number and a 16-bit
sequence number. The file number is the record number (that is, the array slot)
in the MFT that describes the file. The sequence number is incremented every
time an MFT entry is reused. This incrementation enables NTFS to perform
internal consistency checks, such as catching a stale reference to a deleted file
after the MFT entry has been reused for a new file.

As in MS-DOS and UNIX, the NTFS name space is organized as a hierarchy
of directories. Each directory uses a data structure called a B+ tree to store
an index of the file names in that directory. This scheme is used because it
eliminates the cost of reorganizing the tree and because every path from the
root of the tree to a leaf is the same length as every other path. The index root
of a directory contains the top level of the B+ tree. For a large directory, this top
level contains pointers to disk extents that hold the remainder of the tree. Each
entry in the directory contains the name and file reference of the file, as well
as a copy of the update timestamp and file size taken from the file’s resident
attributes in the MFT. Copies of this information are stored in the directory,
so a directory listing can be efficiently generated—because all the file names,
sizes, and update times are available from the directory itself, there is no need
to gather these attributes from the MFT entries for each of the files.

The NTFS volume’s metadata are all stored in files. The first file is the MFT.
The second file, which is used during recovery if the MFT is damaged, contains
a copy of the first 16 entries of the MFT. The next few files are also special. They
are called the log file, volume file, attribute-definition table, root directory,
bitmap file, boot file, and bad-cluster file. The log file (Section C.5.2) records
all metadata updates to the file system. The volume file contains the name of
the volume, the version of NTFS that formatted the volume, and a bit that tells
whether the volume may have been corrupted and needs to be checked for
consistency. The attribute-definition table indicates which attribute types are
used in the volume and what operations can be performed on each of them.
The root directory is the top-level directory in the file-system hierarchy. The
bitmap file indicates which clusters on a volume are allocated to files and
which are free. The boot file contains the startup code for Windows and must
be located at a particular disk address so that it can be found easily by a simple
ROM bootstrap loader. The boot file also contains the physical address of the
MFT. Finally, the bad-cluster file keeps track of any bad areas on the volume;
NTFS uses this record for error recovery.

C.5.2 Recovery

In many simple file systems, a power failure at the wrong time can damage
the file-system data structures so severely that the entire volume is scrambled.
Many versions of UNIX store redundant metadata on the disk, and they recover
from crashes using the fsckprogram to check all the file-system data structures
and to restore them forcibly to a consistent state. Restoring them often involves
deleting damaged files and freeing data clusters that had been written with



924 Appendix C Windows 2000

user data but had not been properly recorded in the file system’s metadata
structures. This checking can be a slow process and can result in the loss of
significant numbers of data.

NTFS takes a different approach to file-system robustness. In NTFS, all file-
system data-structure updates are performed inside transactions. Before a data
structure is altered, the transaction writes a log record that contains redo and
undo information; after the data structure has been changed, the transaction
writes a commit record to the log to signify that the transaction succeeded. After
a crash, the system can restore the file-system data structures to a consistent
state by processing the log records, first redoing the operations for committed
transactions and then undoing the operations for transactions that did not
commit successfully before the crash. Periodically (usually every 5 seconds), a
checkpoint record is written to the log. The system does not need log records
prior to the checkpoint to recover from a crash. They can be discarded, so the
log file does not grow without bound. The first time after system startup that
an NTFS volume is accessed, NTFS automatically performs file-system recovery.

This scheme does not guarantee that all the user-file contents are correct
after a crash; it ensures only that the file-system data structures (the metadata
files) are undamaged and reflect some consistent state that existed prior to the
crash. It would be possible to extend the transaction scheme to cover user files,
but the overhead would impair the file-system performance.

The log is stored in the third metadata file at the beginning of the volume.
It is created with a fixed maximum size when the file system is formatted. It
has two sections: the logging area, which is a circular queue of log records,
and the restart area, which holds context information, such as the position in
the logging area where NTFS should start reading during a recovery. In fact,
the restart area holds two copies of its information, so recovery is still possible
if one copy is damaged during the crash.

The logging functionality is provided by the Windows log-file service. In
addition to writing the log records and performing recovery actions, the log-file
service keeps track of the free space in the log file. If the free space gets too
low, the log-file service queues pending transactions, and NTFS halts all new
I/O operations. After the in-progress operations complete, NTFS calls the cache
manager to flush all data and then resets the log file and performs the queued
transactions.

C.5.3 Security

The security of an NTFS volume is derived from the Windows object model.
A security-descriptor attribute is stored in the MFT record of each file object.
This attribute contains the access token of the owner of the file and an access-
control list that states the access privileges granted to each user having access
to the file.

C.5.4 Volume Management and Fault Tolerance

FtDisk is the fault-tolerant disk driver for Windows. When installed, it
provides several ways to combine multiple disk drives into one logical volume
so as to improve performance, capacity, or reliability.

One way to combine multiple disks is to concatenate them logically to
form a large logical volume, as shown in Figure C.7. In Windows, this logical



C.5 File System 925

LCNs 0–128000

LCNs 128001–783361

disk 1 (2.5 GB) disk 2 (2.5 GB)

disk C: (FAT) 2 GB

logical drive D: (NTFS) 3 GB

Figure C.7 Volume set on two drives.

volume, called a volume set, can consist of up to 32 physical partitions. A
volume set that contains an NTFS volume can be extended without disturbance
of the data already stored in the file system. The bitmap metadata on the NTFS
volume are simply extended to cover the newly added space. NTFS continues
to use the same LCN mechanism that it uses for a single physical disk, and the
FtDisk driver supplies the mapping from a logical volume offset to the offset
on one particular disk.

Another way to combine multiple physical partitions is to interleave their
blocks in round-robin fashion to form what is called a stripe set, as shown in
Figure C.8. This scheme is also called RAID level 0, or disk striping. FtDisk
uses a stripe size of 64 KB: The first 64 KB of the logical volume are stored in

disk 1 (2 GB) disk 2 (2 GB)

logical drive C: 4 GB

LCNs 0–15 LCNs 16–31

LCNs 32–47 LCNs 48–63

LCNs 64–79 LCNs 80–95

Figure C.8 Stripe set on two drives.



926 Appendix C Windows 2000

disk 1 (2 GB) disk 2 (2 GB)

logical drive C: 4 GB

parity 0–15 LCNs 0–15

LCNs 32–47 parity 16–31

LCNs 64–79 LCNs 80–95

parity 48–63 LCNs 96–111

disk 3 (2 GB)

LCNs 16–31

LCNs 48–63

parity 32–47

LCNs 112–127

Figure C.9 Stripe set with parity on three drives.

the first physical partition, the second 64 KB are stored in the second physical
partition, and so on, until each partition has contributed 64 KB of space. Then
the allocation wraps around to the first disk, allocating the second 64-KB block.
A stripe set forms one large logical volume, but the physical layout can improve
the I/O bandwidth, because, for a large I/O, all the disks can transfer data in
parallel. For more information on RAID, see Section 12.7.

A variation of this idea is the stripe set with parity, which is shown in
Figure C.9. This scheme is also called RAID level 5. Suppose that a stripe set
has eight disks. Seven of the disks will store data stripes, with one data stripe
on each disk, and the eighth disk will store a parity stripe for each data stripe.
The parity stripe contains the byte-wise exclusive or of the data stripes.
If any one of the eight stripes is destroyed, the system can reconstruct the
data by calculating the exclusive or of the remaining seven. This ability to
reconstruct data makes the disk array much less likely to lose data in case of a
disk failure.

Notice that an update to one data stripe also requires recalculation of the
parity stripe. Seven concurrent writes to seven different data stripes thus would
also require updates to seven parity stripes. If the parity stripes were all on the
same disk, that disk could have seven times the I/O load of the data disks. To
avoid creating this bottleneck, we spread the parity stripes over all the disks,
such as by assigning them in round-robin fashion. To build a stripe set with
parity, we need a minimum of three equal-sized partitions located on three
separate disks.

An even more robust scheme is called disk mirroring or RAID level 1; it
is depicted in Figure C.10. A mirror set comprises two equal-sized partitions
on two disks. When an application writes data to a mirror set, FtDisk writes
the data to both partitions, so that the data contents of the two partitions are
identical. If one partition fails, FtDisk has another copy safely stored on the
mirror. Mirror sets can also improve performance, because read requests can
be split between the two mirrors, giving each mirror half of the workload. To
protect against the failure of a disk controller, we can attach the two disks of a



C.5 File System 927

disk 1 (2 GB) disk 2 (2 GB)

drive C: 2 GB copy of drive C: 2 GB

Figure C.10 Mirror set on two drives.

mirror set to two separate disk controllers. This arrangement is called a duplex
set.

To deal with disk sectors that go bad, FtDisk uses a hardware technique
called sector sparing, and NTFS uses a software technique called cluster
remapping. Sector sparing is a hardware capability provided by many disk
drives. When a disk drive is formatted, it creates a map from logical block
numbers to good sectors on the disk. It also leaves extra sectors unmapped, as
spares. If a sector fails, FtDisk will instruct the disk drive to substitute a spare.
Cluster remapping is a software technique performed by the file system. If
a disk block goes bad, NTFS will substitute a different, unallocated block by
changing any affected pointers in the MFT. NTFS also makes a note that the bad
block should never be allocated to any file.

When a disk block goes bad, the usual outcome is a data loss. But sector
sparing or cluster remapping can be combined with fault-tolerant volumes
such as stripe sets to mask the failure of a disk block. If a read fails, the
system reconstructs the missing data by reading the mirror or by calculating
the exclusive or parity in a stripe set with parity. The reconstructed data
are stored into a new location that is obtained by sector sparing or cluster
remapping.

C.5.5 Compression

NTFS can perform data compression on individual files or on all data files in
a directory. To compress a file, NTFS divides the file’s data into compression
units, which are blocks of 16 contiguous clusters. When each compression
unit is written, a data-compression algorithm is applied. If the result fits into
fewer than 16 clusters, the compressed version is stored. When reading, NTFS
can determine whether data have been compressed: If they have been, the
length of the stored compression unit is less than 16 clusters. To improve



928 Appendix C Windows 2000

performance when reading contiguous compression units, NTFS prefetches
and decompresses ahead of the application requests.

For sparse files or files that contain mostly zeros, NTFS uses another
technique to save space. Clusters that contain all zeros are not actually allocated
or stored on disk. Instead, gaps are left in the sequence of virtual-cluster
numbers stored in the MFT entry for the file. When reading a file, if it finds
a gap in the virtual-cluster numbers, NTFS just zero-fills that portion of the
caller’s buffer. This technique is also used by UNIX.

C.5.6 Reparse Points

Reparse points are a new feature in the file system. In effect, they return an
error code when accessed. The reparse data then tell the I/O manager what to
do.

Mount points are a form of reparse points used in organizing files. Unlike
UNIX systems, previous Windows versions provided no way to do a logical
join of partitions. Each partition was assigned a drive letter that was distinct
from every other partition. This meant, among other things, that if a file system
filled, the directory structure would need to be changed to add more space.
Mount points allow you to create a new volume on another drive, move the old
data to the new volume, and then mount the new volume in the original place.
The data appear to be in the same place as before and so are still usable by
installed programs. The mount point is implemented as a reparse point with
reparse data that contains the true volume name.

The remote storage services facility also uses reparse points. When a file is
moved to offline storage, the original file data are replaced with a reparse point
that contains information about where that file is. When the file is accessed
later, the file is retrieved, and the reparse point is replaced with the data from
the file. For more information about hierarchical storage, see Section 12.9.1.

C.6 Networking

Windows supports both peer-to-peer and client–server networking. It also has
facilities for network management. The networking components in Windows
provide data transport, interprocess communication, file sharing across a
network, and the ability to send print jobs to remote printers.

In describing networking in Windows, we refer to two internal networking
interfaces: the network device interface specification (NDIS) and the transport
driver interface (TDI). The NDIS interface was developed in 1989 by Microsoft
and 3Com to separate network adapters from the transport protocols so that
either could be changed without affecting the other. NDIS resides at the interface
between the data-link-control and media-access-control layers in the OSI model
and enables many protocols to operate over many different network adapters.
In terms of the OSI model, the TDI is the interface between the transport layer
(layer 4) and the session layer (layer 5). This interface enables any session-layer
component to use any available transport mechanism. (Similar reasoning led
to the streams mechanism in UNIX.) The TDI supports both connection-based
and connectionless transport and has functions to send any type of data.



C.6 Networking 929

C.6.1 Protocols

Windows implements transport protocols as drivers. These drivers can be
loaded and unloaded from the system dynamically, although in practice the
system typically has to be rebooted after a change. Windows comes with several
networking protocols.

The server message-block (SMB) protocol was first introduced in MS-DOS
3.1. The system uses the protocol to send I/O requests over the network. The SMB
protocol has four message types. Session control messages are commands
that start and end a redirector connection to a shared resource at the server.
A redirector uses File messages to access files at the server. The system uses
Printer messages to send data to a remote print queue and to receive back
status information, and the Message message is used to communicate with
another workstation.

The network basic input/output system (NetBIOS) is a hardware-
abstraction interface for networks, analogous to the BIOS hardware-abstraction
interface devised for PCs running MS-DOS. NetBIOS, developed in the early
1980s, has become a standard network-programming interface. NetBIOS is used
to establish logical names on the network, to establish logical connections, or
sessions, between two logical names on the network, and to support reliable
data transfer for a session via either NetBIOS or SMB requests.

The NetBIOS extended user interface (NetBEUI) was introduced by IBM
in 1985 as a simple, efficient networking protocol for up to 254 machines. It
is the default protocol for Windows 95 peer networking and for Windows for
Workgroups. Windows uses NetBEUI when it wants to share resources with
these networks. Among the limitations of NetBEUI are that it uses the actual
name of a computer as the address and that it does not support routing.

The TCP/IP protocol suite that is used on the Internet has become the de
facto standard networking infrastructure; it is widely supported. Windows
uses TCP/IP to connect to a wide variety of operating systems and hard-
ware platforms. The Windows TCP/IP package includes the simple network-
management protocol (SNMP), dynamic host-configuration protocol (DHCP),
Windows Internet name service (WINS), and NetBIOS support.

The point-to-point tunneling protocol (PPTP) is a protocol provided by
Windows to communicate between remote-access server modules running on
Windows Server machines and other client systems that are connected over the
Internet. The remote-access servers can encrypt data sent over the connection,
and they support multiprotocol virtual private networks over the Internet.

The Novell NetWare protocols (IPX datagram service on the SPX transport
layer) are widely used for PC LANs. The Windows NWLink protocol connects
the NetBIOS to NetWare networks. In combination with a redirector (such
as Microsoft’s Client Service for Netware or Novell’s NetWare Client for
Windows), this protocol enables a Windows client to connect to a NetWare
server.

Windows uses the data-link control (DLC) protocol to access IBM main-
frames and HP printers that are connected directly to the network. This protocol
is not otherwise used by Windows systems.

The AppleTalk protocol was designed as a low-cost connection by Apple
to allow Macintosh computers to share files. Windows systems can share files



930 Appendix C Windows 2000

and printers with Macintosh computers via AppleTalk if a Windows server on
the network is running the Windows Services for Macintosh package.

C.6.2 Distributed-Processing Mechanisms

Although Windows is not a distributed operating system, it does support
distributed applications. Mechanisms that support distributed processing on
Windows include NetBIOS, named pipes and mailslots, windows sockets,
remote procedure calls, and network dynamic data exchange (NetDDE).

In Windows, NetBIOS applications can communicate over the network
using NetBEUI, NWLink, or TCP/IP.

Named pipes are a connection-oriented messaging mechanism. Named
pipes were originally developed as a high-level interface to NetBIOS connec-
tions over the network. A process can also use named pipes to communicate
with other processes on the same machine. Since named pipes are accessed
through the file-system interface, the security mechanisms used for file objects
also apply to named pipes.

The name of a named pipe has a format called the uniform naming
convention (UNC). A UNC name looks like a typical remote file name. The
format of a UNC name is \\server name\share na me\x\y\z, where the
server name identifies a server on the network; a share name identifies any
resource that is made available to network users, such as directories, files,
named pipes and printers; and the \x\y\z part is a normal file path name.

Mailslots are a connectionless messaging mechanism. They are unreliable,
in that a message sent to a mailslot may be lost before the intended recipient
receives it. Mailslots are used for broadcast applications, such as for finding
components on the network; they are also used by the Windows Computer
Browser service.

Winsock is the Windows sockets API. Winsock is a session-layer interface
that is largely compatible with UNIX sockets, with some Windows extensions.
It provides a standardized interface to many transport protocols that may have
different addressing schemes, so that any Winsock application can run on any
Winsock-compliant protocol stack.

A remote procedure call (RPC) is a client–server mechanism that enables
an application on one machine to make a procedure call to code on another
machine. The client calls a local procedure—a stub routine—that packs its
arguments into a message and sends them across the network to a particular
server process. The client-side stub routine then blocks. Meanwhile, the server
unpacks the message, calls the procedure, packs the return results into a
message, and sends them back to the client stub. The client stub unblocks,
receives the message, unpacks the results of the RPC, and returns them to the
caller. This packing of arguments is sometimes called marshalling.

The Windows RPC mechanism follows the widely used distributed-
computing environment standard for RPC messages, so programs written to use
Windows RPCs are highly portable. The RPC standard is detailed. It hides many
of the architectural differences among computers, such as the sizes of binary
numbers and the order of bytes and bits in computer words, by specifying
standard data formats for RPC messages.

Windows can send RPC messages using NetBIOS, or Winsock on TCP/IP
networks, or named pipes on LAN Manager networks. The LPC facility,



C.6 Networking 931

discussed earlier, is similar to RPC, except that in the LPC case the messages are
passed between two processes running on the same computer.

It is tedious and error-prone to write the code to marshal and transmit
arguments, to unmarshal and execute the remote procedure, to marshal and
send the return results, and to unmarshal and return them to the caller.
Fortunately, however, much of this code can be generated automatically from
a simple description of the arguments and return results.

Windows provides the Microsoft Interface Definition Language to
describe the remote procedure names, arguments, and results. The compiler
for this language generates header files that declare the stubs for the remote
procedures and the data types for the argument and return-value messages.
It also generates source code for the stub routines used at the client side and
for an unmarshaller and dispatcher at the server side. When the application is
linked, the stub routines are included. When the application executes the RPC
stub, the generated code handles the rest.

The component object model (COM) is a mechanism for interprocess
communication that was developed for Windows. COM objects provide a
well-defined interface to manipulate the data in the object. Windows has
an extension called DCOM that can be used over a network utilizing the
RPC mechanism to provide a transparent method of developing distributed
applications.

C.6.3 Redirectors and Servers

In Windows, an application can use the Windows I/O API to access files from a
remote computer as though they were local, provided that the remote computer
is running an MS-NET server, such as is provided by Windows or Windows for
Workgroups. A redirector is the client-side object that forwards I/O requests to
remote files, where they are satisfied by a server. For performance and security,
the redirectors and servers run in kernel mode.

In more detail, access to a remote file occurs as follows:

• The application calls the I/O manager to request that a file be opened with
a file name in the standard UNC format.

• The I/O manager builds an I/O request packet, as described in Section
C.3.3.5.

• The I/O manager recognizes that the access is for a remote file and calls a
driver called a multiple universal-naming-convention provider (MUP).

• The MUP sends the I/O request packet asynchronously to all registered
redirectors.

• A redirector that can satisfy the request responds to the MUP. To avoid
asking all the redirectors the same question in the future, the MUP uses a
cache to remember which redirector can handle this file.

• The redirector sends the network request to the remote system.

• The remote-system network drivers receive the request and pass it to the
server driver.

• The server driver hands the request to the proper local file-system driver.



932 Appendix C Windows 2000

• The proper device driver is called to access the data.

• The results are returned to the server driver, which sends the data back to
the requesting redirector. The redirector then returns the data to the calling
application via the I/O manager.

A similar process occurs for applications that use the Win32 network API,
rather than the UNC services, except that a module called a multiprovider
router is used, instead of a MUP.

For portability, redirectors and servers use the TDI API for network
transport. The requests themselves are expressed in a higher-level protocol,
which by default is the SMB protocol mentioned in Section C.6.1. The list of
redirectors is maintained in the system registry database.

C.6.4 Domains

Many networked environments have natural groups of users, such as students
in a computer laboratory at school or employees in one department in a
business. Frequently, we want all the members of the group to be able to
access shared resources on their various computers in the group. To manage
the global access rights within such groups, Windows uses the concept of
a domain. Previously, these domains had no relationship whatsoever to the
domain name system (DNS) that maps Internet host names to IP addresses;
now, however, they are closely related.

Specifically, a Windows domain is a group of Windows workstations and
servers that share a common security policy and user database. Since Windows
now uses the Kerberos protocol for trust and authentication, a Windows
domain is the same thing as a Kerberos realm. Previous versions of NT used the
idea of primary and backup domain controllers; now all servers in a domain are
domain controllers. In addition, previous versions required the setup of one-
way trusts between domains. Windows uses a hierarchical approach based on
DNS and allows transitive trusts that can flow up and down the hierarchy. This
approach reduces the number of trusts required for n domains from n ∗ (n − 1)
to O(n). The workstations in the domain trust the domain controller to give
correct information about the access rights of each user (via the user’s access
token). All users retain the ability to restrict access to their own workstations,
no matter what any domain controller may say.

Because a business may have many departments and a school may have
many classes, it is often necessary to manage multiple domains within a
single organization. A domain tree is a contiguous DNS naming hierarchy
for managing multiple domains. For example, bell-labs.com might be the root of
the tree, with research.bell-labs.com and pez.bell-labs.com as children—domains
research and pez. A forest is a set of noncontiguous names. An example would
be the trees bell-labs.com and/or lucent.com. A forest may be made up of only
one domain tree, however.

Trust relationships can be set up between domains in three ways: one-way,
transitive, and cross-link. Versions of NT through Version 4.0 allowed only
one-way trusts to be set up. A one- way trust is exactly what its name implies:
Domain A is told it can trust domain B. However, B will not trust A unless
another relationship is configured. Under a transitive trust, if A trusts B and
B trusts C, then A, B, and C all trust one another, since transitive trusts are



C.7 Programmer Interface 933

two-way by default. Transitive trusts are enabled by default for new domains
in a tree and can be configured only among domains within a forest. The third
type, a cross-link trust, is useful to cut down on authentication traffic. Suppose
that domains A and B are leaf nodes and that users in A often use resources in
B. If a standard transitive trust is used, authentication requests must traverse
up to the common ancestor of the two leaf nodes; but if A and B have a cross-
linking trust established, the authentications can be sent directly to the other
node.

C.6.5 Name Resolution in TCP/IP Networks

On an IP network, name resolution is the process of converting a computer
name to an IP address, such as resolving www.bell-labs.com to 135.104.1.14.
Windows provides several methods of name resolution, including Windows
Internet Name Service (WINS), broadcast name resolution, domain name
system (DNS), a hosts file, and an LMHOSTS file. Most of these methods are
used by many operating systems, so we describe only WINS here.

Under WINS, two or more WINS servers maintain a dynamic database of
name-to-IP address bindings, along with client software to query the servers.
At least two servers are used, so that the WINS service can survive a server
failure and so that the name-resolution workload can be spread over multiple
machines.

WINS uses the dynamic host-configuration protocol (DHCP). DHCP updates
address configurations automatically in the WINS database, without user
or administrator intervention, as follows. When a DHCP client starts up, it
broadcasts a discover message. Each DHCP server that receives the message
replies with an offer message that contains an IP address and configuration
information for the client. The client then chooses one of the configurations
and sends a request message to the selected DHCP server. The DHCP server
responds with the IP address and configuration information it gave previously
and with a lease for that address. The lease gives the client the right to use that
IP address for a specified period of time. When the lease time is half expired,
the client will attempt to renew the lease for that address. If the lease is not
renewed, the client must get a new one.

C.7 Programmer Interface

The Win32 API is the fundamental interface to the capabilities of Windows. This
section describes five main aspects of the Win32 API: access to kernel objects,
sharing of objects between processes, process management, interprocess com-
munication, and memory management.

C.7.1 Access to and Sharing of Kernel Objects

The Windows kernel provides many services that application programs can
use. Application programs obtain these services by manipulating kernel
objects. A process gains access to a kernel object named XXX by calling the
CreateXXX function to open a handle to XXX. This handle is unique to that pro-
cess. Depending on which object is being opened, if the create function fails, it
may return 0, or it may return a special constant named INVALID HANDLE VALUE.



934 Appendix C Windows 2000

SECURITY ATTRIBUTES sa;
sa.nlength = sizeof(sa);
sa.lpSecurityDescriptor = NULL;
sa.bInheritHandle = TRUE;
Handle a semaphore = CreateSemaphore(&sa, 1, 1, NULL);
char comand line[132];
ostrstream ostring(command line, sizeof(command line));
ostring << a semaphore << ends;
CreateProcess("another process.exe", command line,

NULL, NULL, TRUE, . . .);

Figure C.11 Code for a child to share an object by inheriting a handle.

A process can close any handle by calling the CloseHandle function, and the
system may delete the object if the count of processes using the object drops
to 0.

Windows provides three ways to share objects between processes. The first
way is for a child process to inherit a handle to the object. When the parent
calls the CreateXXX function, the parent supplies a SECURITIES ATTRIBUTES
structure with the bInheritHandle field set to TRUE. This field creates an
inheritable handle. Then the child process can be created, passing a value of
TRUE to theCreateProcess function’sbInheritHandle argument. Figure C.11
shows a code sample that creates a semaphore handle that is inherited by a
child process.

Assuming that the child process knows which handles are shared, the
parent and child can achieve interprocess communication through the shared
objects. In the example in Figure C.11, the child process would get the value
of the handle from the first command-line argument and could then share the
semaphore with the parent process.

The second way to share objects is for one process to give the object a name
when that object is created and for the second process to open that name. This
method has two drawbacks. First, Windows does not provide a way to check
whether an object with the chosen name already exists. Second, the object name
space is global, without regard to the object type. For instance, two applications
may create an object named pipe when two distinct—and possibly different—
objects are desired.

// Process A
. . .
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, "MySEM1");
. . .

// Process B
. . .
HANDLE b semaphore = OpenSemaphore(SEMAPHORE ALL ACCESS,

FALSE, "MySEM1");
. . .

Figure C.12 Code for sharing an object by name lookup.



C.7 Programmer Interface 935

Named objects have the advantage that unrelated processes can share them
readily. The first process can call one of the CreateXXX functions and supply a
name in the lpszName parameter. The second process can get a handle to share
this object by calling OpenXXX (or CreateXXX) with the same name, as shown
in the example of Figure C.12.

The third way to share objects is via the DuplicateHandle function. This
method requires some other method of interprocess communication to pass
the duplicated handle. Given a handle to a process and the value of a handle
within that process, a second process can get a handle to the same object and
thus share it. An example of this method is shown in Figure C.13.

C.7.2 Process Management

In Windows, a process is an executing instance of an application, and a thread
is a unit of code that can be scheduled by the operating system. Thus, a
process contains one or more threads. A process is started when some other
process calls the CreateProcess routine. This routine loads any dynamic link
libraries that are used by the process and creates a primary thread. Additional
threads can be created by the CreateThread function. Each thread is created
with its own stack, which defaults to 1 MB unless specified otherwise in an
argument to CreateThread. Because some C run-time functions maintain
state in static variables, such as errno, a multithread application needs to
guard against unsynchronized access. The wrapper function beginthreadex
provides appropriate synchronization.

Every dynamic link library or executable file that is loaded into the address
space of a process is identified by an instance handle. The value of the instance
handle is actually the virtual address where the file is loaded. An application
can get the handle to a module in its address space by passing the name of the
module to GetModuleHandle. If NULL is passed as the name, the base address
of the process is returned. The lowest 64 KB of the address space are not used,

// Process A wants to give Process B access to a semaphore

// Process A
HANDLE a semaphore = CreateSemaphore(NULL, 1, 1, NULL);
// send the value of the semaphore to Process B
// using a message or shared memory object
. . .

// Process B
HANDLE process a = OpenProcess(PROCESS ALL ACCESS, FALSE,

process id of A);
HANDLE b semaphore;
DuplicateHandle(process a, a semaphore,

GetCurrentProcess(), &b semaphore,
0, FALSE, DUPLICATE SAME ACCESS);

// use b semaphore to access the semaphore
. . .

Figure C.13 Code for sharing an object by passing a handle.



936 Appendix C Windows 2000

so a faulty program that tries to dereference a NULL pointer will get an access
violation.

Priorities in the Win32 environment are based on the Windows scheduling
model, but not all priority values can be chosen. Win32 uses four priority classes:

• IDLE PRIORITY CLASS (priority level 4)

• NORMAL PRIORITY CLASS (priority level 8)

• HIGH PRIORITY CLASS (priority level 13)

• REALTIME PRIORITY CLASS (priority level 24)

Processes are typically members of the NORMAL PRIORITY CLASS unless
the parent of the process was of the IDLE PRIORITY CLASS or another class
was specified when CreateProcess was called. The priority class of a
process can be changed with the SetPriorityClass function or with an
argument passed to the START command. For example, the command START
/REALTIME cbserver.exe would run the cbserver program in the REAL-
TIME PRIORITY CLASS. Only users with the increase scheduling priority privilege
can move a process into the REALTIME PRIORITY CLASS. Administrators and
power users have this privilege by default.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows has a
special scheduling rule for processes in the NORMAL PRIORITY CLASS. Windows
distinguishes between the foreground process that is currently selected on
the screen and the background processes that are not currently selected.
When a process moves into the foreground, Windows increases the scheduling
quantum by some factor—typically by 3. (This factor can be changed via the
performance option in the system section of the control panel.) This increase
gives the foreground process three times longer to run before a timesharing
preemption occurs.

A thread starts with an initial priority determined by its class, but the
priority can be altered by the SetThreadPriority function. This function
takes an argument that specifies a priority relative to the base priority of its
class:

• THREAD PRIORITY LOWEST: base − 2

• THREAD PRIORITY BELOW NORMAL: base − 1

• THREAD PRIORITY NORMAL: base + 0

• THREAD PRIORITY ABOVE NORMAL: base + 1

• THREAD PRIORITY HIGHEST: base + 2

Two other designations are also used to adjust the priority. Recall from
Section C.3.2 that the kernel has two priority classes: 16–31 for the real-time
class and 0–15 for the variable-priority class. THREAD PRIORITY IDLE sets the
priority to 16 for real-time threads and to 1 for variable-priority threads.
THREAD PRIORITY TIME CRITICAL sets the priority to 31 for real-time threads
and to 15 for variable-priority threads.



C.7 Programmer Interface 937

As we discussed in Section C.3.2, the kernel adjusts the priority of a
thread dynamically depending on whether the thread is I/O bound or CPU
bound. The Win32 API provides a method to disable this adjustment, via
SetProcessPriorityBoost and SetThreadPriorityBoost functions.

A thread can be created in a suspended state: The thread will not execute
until another thread makes it eligible via the ResumeThread function. The
SuspendThread function does the opposite. These functions set a counter, so
if a thread is suspended twice, it must be resumed twice before it can run.

To synchronize concurrent access to shared objects by threads, the ker-
nel provides synchronization objects, such as semaphores and mutexes. In
addition, synchronization of threads can be achieved by use of the WaitFor-
SingleObject and WaitForMultipleObjects functions. Another method of
synchronization in the Win32 API is the critical section. A critical section is a
synchronized region of code that can be executed by only one thread at a time. A
thread establishes a critical section by calling InitializeCriticalSection.
The application must call EnterCriticalSection before entering the critical
section and LeaveCriticalSection after exiting the critical section. These
two routines guarantee that, if multiple threads attempt to enter the critical
section concurrently, only one thread at a time will be permitted to proceed;
the others will wait in the EnterCriticalSection routine. The critical-section
mechanism is slightly faster than the kernel-synchronization objects.

A fiber is user-mode code that is scheduled according to a user-defined
scheduling algorithm. A process can have multiple fibers, just as it can have
multiple threads. A major difference between threads and fibers is that whereas
threads can execute concurrently, only one fiber at a time is permitted to
execute, even on multiprocessor hardware. This mechanism is included in
Windows to facilitate the porting of those legacy UNIX applications that were
written for a fiber-execution model.

The system creates a fiber by calling either ConvertThreadToFiber
or CreateFiber. The primary difference between these functions is that
CreateFiber does not begin executing the fiber that was created. To begin
execution, the application must call SwitchToFiber. The application can
terminate a fiber by calling DeleteFiber.

C.7.3 Interprocess Communication

One way Win32 applications can do interprocess communication is by sharing
kernel objects. Another way is by passing messages, an approach that is
particularly popular for Windows GUI applications.

One thread can send a message to another thread or to a window by calling
PostMessage, PostThreadMessage, SendMessage, SendThreadMessage, or
SendMessageCallback. The difference between posting a message and sending
a message is that the post routines are asynchronous: They return immediately,
and the calling thread does not know when the message is actually delivered.
The send routines are synchronous: They block the caller until the message has
been delivered and processed.

In addition to sending a message, a thread can send data with the message.
Since processes have separate address spaces, the data must be copied. The
system copies the data by calling SendMessage to send a message of type
WM COPYDATA with a COPYDATASTRUCT data structure that contains the length



938 Appendix C Windows 2000

// allocate 16 MB at the top of our address space

void *buf = VirtualAlloc(0, 0x1000000, MEM RESERVE | MEM TOP DOWN,

PAGE READWRITE);

// commit the upper 8 MB of the allocated space

VirtualAlloc(buf + 0x800000, 0x800000, MEM COMMIT, PAGE READWRITE);

// do something with the memory

. . .

// now decommit the memory

VirtualFree(buf + 0x800000, 0x800000, MEM DECOMMIT);

// release all of the allocated address space

VirtualFree(buf, 0, MEM RELEASE);

Figure C.14 Code fragments for allocating virtual memory.

and address of the data to be transferred. When the message is sent, Windows
copies the data to a new block of memory and gives the virtual address of the
new block to the receiving process.

Unlike threads in the 16-bit Windows environment, every Win32 thread has
its own input queue from which it receives messages. (All input is received via
messages.) This structure is more reliable than the shared input queue of 16-bit
Windows, because with separate queues, one stuck application cannot block
input to the other applications. If a Win32 application does not call GetMessage
to handle events on its input queue, the queue will fill up; after about 5 seconds,
the system will mark the application as “Not Responding.”

C.7.4 Memory Management

The Win32 API provides several ways for an application to use memory: virtual
memory, memory-mapped files, heaps, and thread-local storage.

An application calls VirtualAlloc to reserve or commit virtual memory
and VirtualFree to decommit or release the memory. These functions enable
the application to specify the virtual address at which the memory is allocated.
They operate on multiples of the memory page size, and the starting address of
an allocated region must be greater than 0x10000. Examples of these functions
appear in Figure C.14.

A process can lock some of its committed pages into physical memory by
calling VirtualLock. The maximum number of pages that a process can lock
is 30, unless the process first calls SetProcessWorkingSetSize to increase the
maximum working-set size.

A second way for an application to use memory is by memory-mapping
a file into its address space. Memory mapping is also a convenient way for
two processes to share memory: Both processes map the same file into their
virtual memory. Memory mapping is a multistage process, as you can see in
the example in Figure C.15.

If a process wants to map some address space just to share a memory
region with another process, no file is needed. The process can call Create-
FileMapping with a file handle of 0xffffffff and a particular size. The resulting
file-mapping object can be shared by inheritance, by name lookup, or by
duplication.



C.7 Programmer Interface 939

// open the file or create it if it does not exist

HANDLE hfile = CreateFile("somefile", GENERIC READ | GENERIC WRITE,

FILE SHARE READ | FILE SHARE WRITE, NULL,

OPEN ALWAYS, FILE ATTRIBUTE NORMAL, NULL);

// create the file mapping 8 MB in size

HANDLE hmap = CreateFileMapping(hfile, PAGE READWRITE,

SEC COMMIT, 0, 0x800000, "SHM 1");

// now get a view of the space mapped

void *buf = MapViewOfFile(hmap, FILE MAP ALL ACCESS,

0, 0, 0, 0x800000);

// do something with the mapped file

. . .

// now unmap the file

UnMapViewOfFile(buf);

CloseHandle(hmap);

CloseHandle(hfile);

Figure C.15 Code fragments for memory mapping a file.

Heaps provide a third way for applications to use memory. A heap in
the Win32 environment is just a region of reserved address space. When a
Win32 process is initialized, it is created with a 1-MB default heap. Since
many Win32 functions use the default heap, access to the heap is synchronized
to protect the heap’s space-allocation data structures from being damaged
by concurrent updates by multiple threads. Win32 provides several heap-
management functions so that a process can allocate and manage a private
heap. These functions are HeapCreate, HeapAlloc, HeapRealloc, HeapSize,
HeapFree, and HeapDestroy. The Win32 API also provides the HeapLock and
HeapUnlock functions to enable a thread to gain exclusive access to a heap.
Unlike VirtualLock, these functions perform only synchronization; they do
not lock pages into physical memory.

A fourth way for applications to use memory is through a thread-local
storage mechanism. Functions that rely on global or static data typically
fail to work properly in a multithreaded environment. For instance, the C
run-time function strtok uses a static variable to keep track of its current
position while parsing a string. For two concurrent threads to execute strtok
correctly, they need separate current position variables. The thread-local storage
mechanism allocates global storage on a per-thread basis. It provides both

// reserve a slot for a variable
DWORD var index = T1sAlloc();
// set it to the value 10
T1sSetValue(var index, 10);
// get the value
int var T1sGetValue(var index);
// release the index
T1sFree(var index);

Figure C.16 Code for dynamic thread-local storage.



940 Appendix C Windows 2000

dynamic and static methods of creating thread-local storage. The dynamic
method is illustrated in Figure C.16.

To use a thread-local static variable, the application declares the variable
as follows to ensure that every thread has its own private copy:

declspec(thread) DWORD cur pos = 0;

C.8 Summary

Microsoft designed Windows to be an extensible, portable operating system
—one able to take advantage of new techniques and hardware. Windows
supports multiple operating environments and symmetric multiprocessing. In
addition, Windows supports a wide variety of application environments owing
to its use of kernel objects to provide basic services, as well as its support for
client–server computing. For instance, Windows can run programs compiled
for MS-DOS, Win16, Windows 95, Windows, and POSIX. It provides virtual
memory, integrated caching, and preemptive scheduling. Windows supports
a security model stronger than those of previous Microsoft operating systems
and includes internationalization features. Windows runs on a wide variety of
computers, so users can choose and upgrade hardware to match their budgets
and performance requirements without needing to alter the applications that
they run.

Exercises

C.1 What are some reasons why moving the graphics code in Windows
2000 from user mode to kernel mode might decrease the reliability of
the system? Which of the original design goals for Windows 2000 does
this degradation violate?

C.2 The Windows VM manager uses a two-stage process to allocate memory.
Identify several ways in which this approach is beneficial.

C.3 Discuss some advantages and some disadvantages of the page-table
structure used in Windows.

C.4 What is the maximum number of page faults that could occur in the
access of (a) a virtual address and (b) a shared virtual address? What
hardware mechanism do most processors provide to decrease these
numbers?

C.5 What is the purpose of a prototype page-table entry in Windows?

C.6 What are the steps the cache manager must take to copy data into and
out of the cache?

C.7 What are the main problems involved in running 16-bit Windows
applications in a VDM? Identify the solutions chosen by Windows for
each of these problems. For each solution, name at least one drawback.

C.8 What changes would be needed for Windows to run a process that uses
a 64-bit address space?



Bibliographical Notes 941

C.9 Windows has a centralized cache manager. What are the advantages
and disadvantages of this cache manager?

C.10 Windows uses a packet-driven I/O system. Discuss the pros and cons
of the packet-driven approach to I/O.

C.11 Consider a main-memory database of 1 terabyte. What mechanisms in
Windows could you use to access this database?

Bibliographical Notes

Solomon and Russinovich [2000] give an overview of Windows and consider-
able technical detail about the system internals and components. Tate [2000] is
a good reference on using Windows. The Microsoft Windows Server Resource
Kit (Microsoft [2000b]) is a six-volume set helpful for using and deploying Win-
dows. The Microsoft Developer Network Library (Microsoft [2000a]), issued
quarterly, provides a wealth of information on Windows and other Microsoft
products. Iseminger [2000] provides a good reference on the Windows Active
Directory. Richter [1997] gives a detailed discussion of writing programs that
use the Win32 API. Silberschatz et al. [2001] contains a good discussion of B+
trees.




