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I hear and I forget, I see and I remember,
I do and I understand.

–Chinese proverb

A good way to gain a deeper understanding of modern operating-system
concepts is to get your hands dirty—to take apart the code for an operating
system to see how it works at a low level, to build significant pieces of the
operating system yourself, and to observe the effects of your work. Many of
the concepts are best learned by example and experimentation. That is why we
have created an operating-system course project, to let you see how you can
use basic concepts to solve real-world problems. The project we have created
is Nachos., It is an instructional operating system intended for use as the
course project for an undergraduate or first-year graduate course in operating
systems. Nachos includes code for a simple but complete working operating
system, a machine simulator that allows it to be used in a normal UNIX
workstation environment, and a set of sample assignments. Nachos lets anyone
explore all the major components of a modern operating system described
in the book, from threads and process synchronization, to file systems, to
multiprogramming, to virtual memory, to networking. The assignments ask
you to design and implement a significant piece of functionality in each of
these areas.

Nachos is distributed without charge. It currently runs on both DEC MIPS
UNIX workstations and Sun SPARC workstations; ports to other machines are
in progress. See Section D.4 to learn how to obtain a copy of Nachos.

Here, we give an overview of the Nachos operating system and the machine
simulator, and we describe our experiences with the example assignments.
Nachos is evolving continually, because the field of operating systems is
evolving continually. Thus, we can give only a snapshot of Nachos; in Section
D.4 we explain how to obtain more up-to-date information.

966



D.1 Overview 967

D.1 Overview

Many of the earliest operating-system course projects were designed in
response to the development of UNIX in the mid-1970s. Earlier operating
systems, such as MULTICS and OS/360, were far too complicated for an
undergraduate to understand, much less to modify, in one semester.

Even UNIX itself is too complicated for that purpose, but UNIX showed that
the core of an operating system can be written in only a few dozen pages, with
a few simple but powerful interfaces. However, recent advances in operating
systems, hardware architecture, and software engineering have caused many
operating-systems projects developed over the past two decades to become
out-of- date. Networking and distributed applications are now commonplace.
Threads are crucial for the construction of both operating systems and higher-
level concurrent applications. And the cost–performance tradeoffs among
memory, CPU speed, and secondary storage are now different from those
imposed by core memory, discrete logic, magnetic drums, and card readers.

Nachos is intended to help you learn about these modern systems con-
cepts. Nachos illustrates and takes advantage of modern operating-systems
technology, such as threads and remote procedure calls; recent hardware
advances, such as RISCs and the prevalence of memory hierarchies; and mod-
ern software-design techniques, such as protocol layering and object-oriented
programming.

In designing Nachos, we constantly faced the tradeoff between simplicity
and realism in choosing what code to provide as part of the baseline system,
and what to leave for the assignments. We wanted to balance the time that you
spend reading code with the time you spend designing and implementing,
and the time you spend learning new concepts. At one extreme, we could have
provided nothing but bare hardware, leaving a tabula rasa for you to build an
operating system from scratch. This approach is impractical, given the scope
of topics to cover. At the other extreme, starting with code that is too realistic
would make it easy to lose sight of key ideas in a forest of details.

Our approach was to build the simplest possible implementation for each
subsystem of Nachos; this provides a working example—albeit a simplistic
one—of the operation of each component of an operating system. The baseline
Nachos operating-system kernel includes a thread manager, a file system, the
ability to run user programs, and a simple network mailbox. As a result of our
emphasis on simplicity, the baseline kernel comprises about 2,500 lines of code;
about one-half of these are devoted to interface descriptions and comments.
(The hardware simulator takes up another 2,500 lines, but you do not need
to understand the details of its operation to do the assignments.) It is thus
practical to read, understand, and modify Nachos during a single semester
course. By contrast, building a project around a system like UNIX would add
realism, but the UNIX 4.3BSD file system by itself, excluding the device drivers,
comprises roughly 5,000 lines of code. Since a typical course will spend about
2 to 3 weeks on file systems, size makes UNIX impractical as a basis for an
undergraduate operating-system course project.

We have found that the baseline Nachos kernel can demystify a number
of operating-system concepts that are difficult to understand in the abstract.
Simply reading and walking through the execution of the baseline system can
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answer questions about how an operating system works at a low level, such
as:

• How do all the pieces of an operating system fit together?

• How does the operating system start a thread? How does it start a process?

• What happens when one thread context switches to another thread?

• How do interrupts interact with the implementation of critical sections?

• What happens on a system call? What happens on a page fault?

• How does address translation work?

• Which data structures in a file system are on disk, and which are in
memory?

• What data need to be written to disk when a user creates a file?

• How does the operating system interface with I/O devices?

• What does it mean to build one layer of a network protocol on another?

Of course, reading code by itself can be a pointless exercise; we addressed
this problem by keeping the code as simple as possible, and by designing
assignments that modify the system in fundamental ways. Because we start
with working code, the assignments can focus on the more interesting aspects
of operating-system design, where tradeoffs exist and there is no single right
answer.

D.2 Nachos Software Structure

Before we discuss the sample assignments, we outline the structure of the
Nachos software. Figure D.1 illustrates how the major pieces in Nachos fit
together. Like many earlier instructional operating systems, Nachos runs
on a simulation of real hardware. When operating-system projects were first
developed in the 1970s and early 1980s, simulators were used to make better
use of scarce hardware resources. Without a simulator, each student would
need her own physical machine to test new versions of the kernel. Now that
personal computers are commonplace, is there still a reason to develop an
operating system on a simulator, rather than on physical hardware?

We believe that the answer is “yes,” because using a simulator makes
debugging easier. On real hardware, operating-system behavior is nondeter-
ministic; depending on the precise timing of interrupts, the operating system
may take one path through its code or another. Synchronization can help to
make operating-system behavior more predictable, but what if we have a bug
in our synchronization code such that two threads can access the same data
structure at the same time? The kernel may behave correctly most of the time,
yet crash occasionally. Without being able to repeat the behavior that led to
the crash, however, it would be difficult to find the root cause of the problem.
Running on a simulator, rather than on real hardware, allows us to make system
behavior repeatable. Of course, debugging nonrepeatable execution sequences
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is part of life for professional operating-system engineers, but it did not seem
advisable for us to make this experience part of your introduction to operating
systems.

Running on simulated hardware has other advantages. During debugging,
we need to make a change to the system quickly, to recompile, and to test
the change to see whether it fixed the problem. Using a simulator reduces
the time required for this edit–compile–debug cycle; otherwise the entire
system has to be rebooted to test a new version of the kernel. Moreover,
normal debugging tools do not work on operating-system kernels, because, for
example, if the kernel stops at a breakpoint, the debugger cannot use the kernel
to print the prompt for the next debugging command. In practice, debugging
an operating- system kernel on real hardware requires two machines: one to
run the kernel under test, and the other to run the debugger. For these reasons,
many commercial operating-system development projects now routinely use
simulators to speed development.

One approach would be to simulate the entire workstation hardware,
including fetching, decoding, and executing each kernel- or user-mode instruc-
tion in turn. Instead, we take a shortcut for performance. The Nachos kernel
code executes in native mode as a normal (debuggable) UNIX process linked
with the hardware simulator. The simulator surrounds the kernel code, making
it appear as though it is running on real hardware. Whenever the kernel code
accesses an I/O device—such as a clock chip, a disk, a network controller, or a
console—the simulator is invoked to perform the I/O activity. For instance, the
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Figure D.1 How the major pieces in Nachos fit together.
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simulator implements disk I/O using UNIX file routines; it implements network
packet transfer via UNIX sockets.

In addition, we simulate each instruction executed in user mode. Whenever
the kernel gives up control to run application code, the simulator fetches each
application instruction in turn, checks for page faults or other exceptions, and
then simulates its execution. When an application page fault or hardware
interrupt occurs, the simulator passes control back to the kernel for processing,
as the hardware would in a real system.

Thus, in Nachos, user applications, the operating-system kernel, and the
hardware simulator run together in a normal UNIX process. The UNIX process
thus represents a single workstation running Nachos. The Nachos kernel,
however, is written as though it were running on real hardware. In fact,
we could port the Nachos kernel to a physical machine simply by replacing
the hardware simulation with real hardware and a few machine-dependent
device-driver routines.

Nachos differs from earlier systems in several significant ways:

1. We can run normal compiled C programs on the Nachos kernel, because
we simulate a standard, well-documented, instruction set (MIPS R2/3000
integer instructions) for user-mode programs. In the past, operating-
system projects typically simulated their own ad hoc instruction set,
requiring user programs to be written in a special-purpose assembly
language. However, because the R2/3000 is a RISC, it is straightforward to
simulate its instruction set. In all, the MIPS simulation code is only about
10 pages long.

2. We simulate accurately the behavior of a network of workstations, each
running a copy of Nachos. We connect Nachos “machines”, each running
as a UNIX process, via UNIX sockets, simulating a local-area network. A
thread on one “machine” can then send a packet to a thread running on a
different “machine”; of course, both are simulated on the same physical
hardware.

3. The simulation is deterministic, and kernel behavior is reproducible.
Instead of using UNIX signals to simulate asynchronous devices such as
the disk and the timer, Nachos maintains a simulated time that is incre-
mented whenever a user program executes an instruction and whenever
a call is made to certain low-level kernel routines. Interrupt handlers are
then invoked when the simulated time reaches the appropriate point. At
present, the precise timing of network packet delivery is not reproducible,
although this limitation may be fixed in later versions of Nachos.

4. The simulation is randomizable to add unpredictable, but repeatable,
behavior to the kernel thread scheduler. Our goal was to make it easy
to test kernel behavior given different interleavings of the execution of
concurrent threads. Simulated time is incremented whenever interrupts
are enabled within the kernel (in other words, whenever any low-level
synchronization routine, such as semaphore P or V, is called); after a
random interval of simulated time, the scheduler will cause the current
thread to be time sliced. As another example, the network simulation
randomly chooses which packets to drop. Provided that the initial seed



D.3 Sample Assignments 971

to the random number generator is the same, however, the behavior of
the system is repeatable.

5. We hide the hardware simulation from the rest of Nachos via a machine-
dependent interface layer. For example, we define an abstract disk that
accepts requests to read and write disk sectors and provides an interrupt
handler to be called on request completion. The details of the disk
simulator are hidden behind this abstraction, in much the same way that
disk-device–specific details are isolated in a normal operating system.
One advantage to using a machine- dependent interface layer is to make
clear which portions of Nachos can be modified (the kernel and the
applications) and which portions are off-limits (the hardware simulation
—at least until you take a computer-architecture course).

D.3 Sample Assignments

Nachos contains five major components, each the focus of one assignment
given during the semester: thread management and synchronization, the file
system, user-level multiprogramming support, the virtual-memory system,
and networking. Each assignment builds on previous ones; for instance, every
part of Nachos uses thread primitives for managing concurrency. This design
reflects part of the charm of developing operating systems: You get to use what
you build. It is easy, however, to change the assignments or to do them in a
different order.

In Sections D.3.1 through D.3.5, we discuss each of the five assignments
in turn, describing what hardware- simulation facilities and operating-system
structures we provide and what we ask you to implement. Of course, because
Nachos is continuing to evolve, our description is a snapshot of what is
available at the time of printing. Section D.4 explains how to obtain more
up-to-date information.

The assignments are of roughly equal size, each taking approximately
3 weeks of a semester course, assuming that two people work together
on each. The file- system assignment is the most difficult of the five; the
multiprogramming assignment is the least difficult. Faculty who have used
Nachos say that they find it useful to spend 1/2 to 1 hour per week discussing
the assignments. We have found it useful to conduct a design review with each
pair of students the week before each assignment is due.

Nachos is intended to encourage a quantitative approach to operating-
system design. Frequently, the choice of how to implement an operating-system
function reduces to a tradeoff between simplicity and performance. Making
informed decisions about tradeoffs is one of the key tasks to learn in an
undergraduate operating-system course. The Nachos hardware simulation
reflects current hardware performance characteristics (except that kernel
execution time is estimated, rather than measured directly). The assignments
exploit this feature by asking that you explain and optimize the performance
of your implementations on simple benchmarks.

The Nachos kernel and simulator are implemented in a subset of C++.
Object-oriented programming is becoming more popular, and it is a natural
idiom for stressing the importance of modularity and clean interfaces in
building systems. Unfortunately, C++ is a complicated language; thus, to



972 Appendix D The Nachos System

simplify matters, we omitted certain aspects from standard C++: derived
classes, operator and function overloading, C++ streams, and generics. We also
kept inlines to a minimum. The Nachos distribution includes a short primer to
help people who know C to learn our subset of C++; we have found that our
students pick up this subset quickly.

D.3.1 Thread Management and Synchronization

The first assignment introduces the concepts of threads and concurrency.
The baseline Nachos kernel provides a basic working thread system and
an implementation of semaphores; the assignment is to implement Mesa-
style locks and condition variables using semaphores, and then to implement
solutions to a number of concurrency problems using these synchronization
primitives.

Nachos helps to teach concurrency in two ways. First, thread management
in Nachos is explicit: it is possible to trace, literally statement by statement,
what happens during a context switch from one thread to another, from the
perspectives of an outside observer and of the threads involved. We believe
that this experience is crucial to demystifying concurrency. Precisely because
C and C++ allow nothing to be swept under the carpet, concurrency may be
easier to understand (although more difficult to use) in these programming
languages than in those explicitly designed for concurrency, such as Ada or
Modula-3.

Second, a working thread system, like that in Nachos, provides a chance
to practice writing, and testing, concurrent programs. Even experienced
programmers find it difficult to think concurrently. When we first used
Nachos, we omitted many of the practice problems that we now include in
the assignment, thinking that students would see enough concurrency in the
rest of the project. Later, we realized that many students were still making
concurrency errors even in the final phase of the project.

Our primary goal in building the baseline thread system was simplicity, to
reduce the effort required to trace through the thread system’s behavior. The
implementation takes about 10 pages of C++ and one page of MIPS assembly
code. For simplicity, thread scheduling is normally nonpreemptive, but to
emphasize the importance of critical sections and synchronization, we have a
command-line option that causes threads to be time sliced at “random”, but
repeatable, points in the program. Concurrent programs are correct only if they
work when a context switch can happen at any time.

D.3.2 File Systems

Real file systems can be complex artifacts. The UNIX file system, for example,
has at least three levels of indirection—the per-process file-descriptor table, the
system wide open-file table, and the in-core inode table—before you even get
to disk blocks. To make the file system simple enough to read and understand
in a couple of weeks, we were forced to make some difficult choices about
where to sacrifice realism.

We provide a basic working file system, stripped of as much functionality as
possible. Although the file system has an interface similar to that of UNIX (cast
in terms of C++ objects), it also has many significant limitations with respect
to commercial file systems. There is no synchronization (only one thread at a
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time can access the file system).Files have a very small maximum size, and they
have a fixed size once created.There is no caching or buffering of file data. The
file name space is completely flat (there is no hierarchical directory structure).
Finally, we did not attempt to provide robustness across machine and disk
crashes. As a result, the basic file system takes only about 15 pages of code.

The assignment is:

1. To correct some of these limitations, and

2. To improve the performance of the resulting file system.

We list a few possible optimizations, such as caching and disk scheduling, but
part of the exercise is to decide which solutions are the most cost effective.

At the hardware level, we provide a disk simulator, which accepts read
sector and write sector requests and signals the completion of an operation
via an interrupt. The disk data are stored in a UNIX file; read and write sector
operations are performed using normal UNIX file reads and writes. After the
UNIX file is updated, we calculate how long the simulated disk operation should
have taken (from the track and sector of the request), and set an interrupt
to occur that far in the future. Read and write sector requests (emulating
hardware) return immediately; higher-level software is responsible for waiting
until the interrupt occurs.

D.3.3 Multiprogramming

In the third assignment, we provide code to create a user address space, to load
a Nachos file containing an executable image into user memory, and then to run
the program. The initial code is restricted to running only a single user program
at a time. The assignment is to expand this base to support multiprogramming,
to implement a variety of system calls (such as UNIX fork and exec) as well as
a user-level shell, and to optimize the performance of the resulting system on
a mixed workload of I/O- and CPU-bound jobs.

Although we supply little Nachos kernel code as part of this assignment,
the hardware simulation does require a fair amount of code. We simulate the
entire MIPS R2/3000 integer instruction set and a simple single-level page- table
translation scheme. (For this assignment, a program’s entire virtual address
space must be mapped into physical memory; true virtual memory is left for
assignment 4.) In addition, we provide an abstraction that hides most of the
details of the MIPS object-code format.

This assignment requires few conceptual leaps, but it does tie together the
work of the previous two assignments, resulting in a usable—albeit limited
—operating system. Because the simulator can run C programs, it is easy to
write utility programs (such as the shell or UNIX cat) to exercise the system.
(One overly ambitious student attempted unsuccessfully to port emacs.) The
assignment illustrates that writing user code is not very different from writing
operating-system kernel code, except that user code runs in its own address
space, isolating the kernel from user errors.

One important topic that we chose to leave out (again, as a tradeoff against
time constraints) is the trend toward a small-kernel operating-system structure,
where pieces of the operating system are split off into user-level servers.
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Because of Nachos’ modular design, it would be straightforward to move
Nachos toward a small-kernel structure, except that:

1. We have no symbolic debugging support for user programs, and

2. We would need a stub compiler to make it easy to make remote procedure
calls across address spaces.

One reason for adopting a microkernel design is that it is easier to develop
and debug operating-system code as a user-level server than if the code is part
of the kernel. Because Nachos runs as a UNIX process, the reverse is true: It is
easier to develop and debug Nachos kernel code than application code running
on top of Nachos.

D.3.4 Virtual Memory

Assignment 4 is to replace the simple memory-management system from the
previous assignment with a true virtual-memory system—that is, one that
presents to each user program the abstraction of an (almost) unlimited virtual-
memory size by using main memory as a cache for the disk. We provide no
new hardware or operating-system components for this assignment.

The assignment has three parts. The first part is to implement the mecha-
nism for page-fault handling—the kernel must catch the page fault, find the
needed page on disk, find a page frame in memory to hold the needed page
(writing the old contents of the page frame to disk if the page frame is dirty),
read the new page from disk into memory, adjust the page-table entry, and then
resume the execution of the program. This mechanism can take advantage of
the code written for the previous assignments: The backing store for an address
space can be represented simply as a Nachos file, and synchronization is needed
when multiple page faults occur concurrently.

The second part of the assignment is to devise a policy for managing the
memory as a cache—for deciding which page to toss out when a new page
frame is needed, in what circumstances (if any) to do read-ahead, when to
write unused dirty pages back to disk, and how many pages to bring in before
starting to run a program.

These policy questions can have a large effect on overall system perfor-
mance, in part because of the large and increasing gap between CPU speed
and disk latency—this gap has widened by two orders of magnitude in only
the past decade. Unfortunately, the simplest policies often have unacceptable
performance.

To encourage realistic policies , the third part of the assignment is to
measure the performance of the paging system on a matrix multiply program
where the matrices do not fit in memory. This workload is not meant to
be representative of real-life paging behavior, but it is simple enough to
illustrate the influence of policy changes on application performance. Further,
the application illustrates several of the problems with caching: Small changes
in the implementation can have a large effect on performance.
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D.3.5 Networking

The capstone of the project is to write a significant and interesting distributed
application. We included this networking component because distributed
systems have become more and more important commercially.

At the hardware level, each UNIX process running Nachos represents a
uniprocessor workstation. We simulate the behavior of a network of worksta-
tions by running multiple copies of Nachos, each in its own UNIX process, and
by using UNIX sockets to pass network packets from one Nachos “machine” to
another. The Nachos operating system can communicate with other systems by
sending packets into the simulated network; the transmission is accomplished
by socket send and receive. The Nachos network provides unreliable transmis-
sion of limited-sized packets from machine to machine. The likelihood that any
packet will be dropped can be set as a command-line option, as can the seed
used to determine which packets are “randomly” chosen to be dropped. Packets
are dropped but are never corrupted, so that checksums are not required.

To show how to use the network and, at the same time, to illustrate
the benefits of layering, the Nachos kernel comes with a simple post-office
protocol layered on top of the network. The post-office layer provides a set
of mailboxes that route incoming packets to the appropriate waiting thread.
Messages sent through the post office also contain a return address to be used
for acknowledgments.

The assignment is first to provide reliable transmission of arbitrary-sized
packets, and then to build a distributed application on top of that service.
Supporting arbitrary-sized packets is straightforward—you need merely to
split any large packet into fixed-sized pieces, to add fragment serial numbers,
and to send the pieces one by one. Ensuring reliability is more interesting,
requiring a careful analysis and design. To reduce the time required to do the
assignment, we do not ask you to implement congestion control or window
management, although of course these issues are important in protocol design.

The choice of how to complete the project is left open. We do make a
few suggestions: multiuser UNIX talk, a distributed file system with caching, a
process-migration facility, distributed virtual memory, a gateway protocol that
is robust to machine crashes. Perhaps the most interesting application that a
student built (that we know of) was a distributed version of the “battleship”
game, with each player on a different machine. This application illustrated the
role of distributed state, since each machine kept only its local view of the
game board; it also exposed several performance problems in the hardware
simulation, which we have since fixed.

Perhaps the biggest limitation of the current implementation is that we
do not model network performance correctly, because we do not keep the
timers on each of the Nachos machines synchronized with one another. We
are currently working on fixing this problem, using distributed simulation
techniques for efficiency. These techniques will allow us to make performance
comparisons between alternate implementations of network protocols; they
will also enable us to use the Nachos network as a simulation of a message-
passing multiprocessor.
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D.4 Information on Obtaining a Copy of Nachos

You can obtain Nachos by anonymous ftp from the machine ftp.cs.berkeley.edu
by following these steps:

1. Use UNIX ftp to access ftp.cs.berkeley.edu:

ftp ftp.cs.berkeley.edu

2. You will get a login prompt. Type the word anonymous, and then use
your e-mail address as the password.

Name: anonymous
Password: tea@cs.berkeley.edu (for example)

3. You are now in ftp. Move to the Nachos subdirectory.

ftp> cd ucb/nachos

4. You must remember to turn on “binary” mode in ftp; unfortunately, if you
forget to do so, when you fetch the Nachos file, it will be garbled without
any kind of warning message. This error is one of the most common that
people make in obtaining software using anonymous ftp.

ftp> binary

5. You can now copy the compressed UNIX tar file containing the
Nachos distribution to your machine. The software will automatically
enroll you in a mailing list for announcements of new releases of
Nachos; you can remove yourself from this list by sending e-mail to
nachos@cs.berkeley.edu.

ftp> get nachos.tar.Z

6. Exit the ftp program:

ftp> quit

7. Decompress and detar to obtain the Nachos distribution. (If the decom-
press step fails, you probably forgot to set binary mode in ftp in step 4.
You will need to start over.)

uncompress nachos.tar.Z
tar -xf nachos.tar

8. The preceding steps will produce several files, including the code for the
baseline Nachos kernel, the hardware simulator, documentation on the
sample assignments, and the C++ primer. There will also be a README file
to get you started: It explains how to build the baseline system, how to
print out documentation, and which machine architectures are currently
supported.

cat README
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Mendel Rosenblum at Stanford has ported the Nachos kernel to run on
Sun SPARC workstations, although user programs running on top of Nachos
must still be compiled for the MIPS R2/3000 RISC processor. Ports to machines
other than DEC MIPS UNIX workstations and Sun SPARC workstations are in
progress. Up-to-date information on machine availability is included in the
README file in the distribution. The machine dependence comes in two parts.
First, the Nachos kernel runs just like normal application code on a UNIX
workstation, but a small amount of assembly code is needed in the Nachos
kernel to implement thread context switching. Second, Nachos simulates the
instruction-by-instruction execution of user programs, to catch page faults and
other exceptions. This simulation assumes the MIPS R2/3000 instruction set. To
port Nachos to a new machine, we replace the kernel thread-switch code with
machine-specific code, and rely on a C cross- compiler to generate MIPS object
code for each user program. (A cross- compiler is a compiler that generates
object code for one machine type while running on a different machine type.)
Because we rely on a cross-compiler, we do not have to rewrite the instruction-
set simulator for each port to a new machine. The SPARC version of Nachos,
for instance, comes with instructions on how to cross-compile to MIPS on the
SPARC.

Questions about Nachos and bug reports should be directed via e-mail
to nachos@cs.berkeley.edu. Questions can also be posted to the alt.os.nachos
newsgroup.

D.5 Summary

Nachos is an instructional operating system designed to reflect recent advances
in hardware and software technology, to illustrate modern operating-system
concepts, and, more broadly, to help teach the design of complex computer
systems. The Nachos kernel and sample assignments illustrate principles of
computer-system design needed to understand the computer systems of today
and of the future: concurrency and synchronization, caching and locality, the
tradeoff between simplicity and performance, building reliability from unre-
liable components, dynamic scheduling, object-oriented programming, the
power of a level of translation, protocol layering, and distributed computing.
Familiarity with these concepts is valuable, we believe, even for those people
who do not end up working in operating-system development.

Bibliographical Notes

Wayne Christopher, Steve Procter, and Thomas Anderson (the author of this
appendix) did the initial implementation of Nachos in January 1992. The first
version was used for one term as the project for the undergraduate operating-
systems course at The University of California at Berkeley. We then revised
both the code and the assignments, releasing Nachos, Version 2 for public
distribution in August 1992; Mendel Rosenblum ported Nachos to the Sun
SPARC workstation. The second version is currently in use at several universities
including Carnegie Mellon, Colorado State, Duke, Harvard, Stanford, State
University of New York at Albany, University of Washington, and, of course,
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Berkeley; we have benefited tremendously from the suggestions and criticisms
of our early users.

In designing the Nachos project, we borrowed liberally from ideas found
in other systems, including the TOY operating system project, originally devel-
oped by Ken Thompson while he was at Berkeley, and modified extensively by
a collection of people since then; Tunis, developed by Rick Holt (Holt [1983]);
and Minix, developed by Andy Tanenbaum (Tanenbaum [1987]). Lions [1977]
was one of the first people to realize that the core of an operating system
could be expressed in a few lines of code and then used to teach people about
operating systems. The instruction-set simulator used in Nachos is largely
based on a MIPS simulator written by John Ousterhout.

We credit Lance Berc with inventing the acronym “Nachos—Not Another
Completely Heuristic Operating System”.
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