EECS10: Computational Methods in ECE

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 20

Rainer Domer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 20: Overview

» Data Structures

— Structures
* Declaration and definition
* Instantiation and initialization
* Member access
— Unions
 Declaration and definition
* Member access
— Enumerators
* Declaration and definition
— Type definitions

EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

» Structures (aka. records): st ruct
— User-defined, composite data type
» Type is a composition of (different) sub-types
— Fixed set of members
* Names and types of members are fixed at structure definition

— Member access by name
* Member-access operator: st ruct ur e_nane. nenber _nane

+ Example:
struct S{ int i; float f;} s1, s2;
sl.i = 42; /* access to nenbers */
sl.f = 3.1415;
s2 = s, [* assignment */
sl.i = sl.i + 2*s2.i;
EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer

Data Structures

Structure Declaration

— Declaration of a user-defined data type

» Structure Definition

— Definition of structure members and their type
Structure Instantiation and Initialization

— Definition of a variable of structure type

— Initializer list defines initial values of members

* Example:
struct Student; /* declaration */
struct Student /* definition */
{ int | O; /* menbers */
char Nane[40] ;
char Grade;
b
struct Student Jane = /* instantiation */
{1001, “Jane Doe”, ‘A'}; /* initialization */

EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

e Structure Access

— Members are accessed by their name
— Member-access operator .

* Example:
struct Student Jane
{ int ID
char Nane[40] ; 1D 1001
char G ade;
}: Nare [“Jane Doe”
struct Student Jane = G ade ‘A
{1001, “Jane Doe”, ‘A'};
voi d PrintStudent(struct Student s)
printf(“ID %\n”, s.1D); | D 1001
printf(“Name: 9%\n”, s.Nane); Nane: Jane Doe
printf(“Gade: %\n", s.Gade); G ade: A
}
EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 5

Data Structures

e Unions: uni on

User-defined, composite data type
» Type is a composition of (different) sub-types
Fixed set of mutually exclusive members

* Names and types of members are fixed at union definition

Member access by name

* Member-access operator: uni on_nane. nenber _nane

Only one member may be used at a time!

» All members share the same location in memory!

+ Example:

ul.i
u2. f
ul. f

union U { int

42;
3. 1415;
u2. f;

i; float f;} ul, u2;

/* access to nenbers */

[* destroys ul.i! */

EECS10: Computational Methods in ECE, Lecture 20

(c) 2008 R. Doemer 6

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

* Union Declaration
— Declaration of a user-defined data type
* Union Definition
— Definition of union members and their type
* Union Instantiation and Initialization
— Definition of a variable of union type
— Single initializer defines value of first member
* Example:

{ int
i nt

b

uni on HeightOf Triangle; /* declaration */

uni on Hei ght O Tri angl e [* definition */

Hei ght ;

Lengt hOF Si deA;
fl oat Angl eBet a;

uni on HeightOf Triangle H/* instantiation */
={ 42}

/* nmenbers */

/* initialization */

EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 7

* Union Access
— Members are accessed by their name
— Member-access operator .

* Example:

Data Structures

uni on Hei ght O Tri angl e
{ int Height; _ t1l
int SideA Hei ght/
float Beta; Si deA ‘ 0
}; Bet a
)) . t2
:nl{ ozzH}e! ghtOfF Triangle t1, t2, t3 Hei ght /
’ Si de | 0
Bet a
t3
Hei ght/
Si de | 42
Bet a
EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 8

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

* Union Access

— Members are accessed by their name
— Member-access operator .

* Example:
uni on Hei ght O Tri angl e
{ int Height; _ t1l
int SideA Hei ght /
fl oat Beta; Si deA ‘ 10
}; Bet a
. . . t2
:nl{ ozzH}e! ghtOfF Triangle t1, t2, t3 Hei ght /
’ Si de | 5
voi d Set Hei ght (voi d) Bet a
t1. Hei ght = 10; Hei ght / t3
t2.SideA = t1. Height / 2; -
t3.Beta = 90.0; S dEN‘ 90.0
} Bet a
EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 9

Data Structures

* Enumerators: enum
— User-defined data type
* Members are an enumeration of integral constants
— Fixed set of members
* Names and values of members are fixed at enumerator definition

— Members are constants
* Member values cannot be changed after definition

+ Example:

enum E { red, yellow, green };
enum E Li ght NS, Light EW

Li ght EW = green; [* assignment */
if (LightNS == green) [* conparison */
{ LightEW= red; }

EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 10

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

* Enumerator Declaration

* Enumerator Definition

Data Structures

— Declaration of a user-defined data type

— Definition of enumerator members and their value
* Enumerator Instantiation and Initialization
— Definition of a variable of enumerator type
— Initializer should be one member of the enumerator

* Example:

enum Weekday; /* declaration */

enum Weekday [* definition */

{ Monday, Tuesday, /* menbers */
Wednesday, Thur sday,
Friday, Saturday, Sunday

IE

enum \Weekday Today /* instantiation */

= Wednesday; /* initialization */

EECS10: Computational Methods in ECE, Lecture 20

(c) 2008 R. Doemer

1"

* Enumerator Values
— Enumerator values are

* Example:

Today
| Vednesday |

‘Day: 2 ‘

EECS10: Computational Methods in ECE, Lecture 20

start at 0 and are incremented
by 1 for each following member Fri day,

Data Structures

enum Weekday

integer constants { Monday,
— By default, enumerator values Tuesday,
Wednesday,

Thur sday,

Sat ur day,
Sunday

b
enum Weekday Today
= Wednesday;

voi d Print\Wekday(
enum Weekday d)

printf(“Day: %\ n”,

}

d);

(c) 2008 R. Doemer

12

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

* Enumerator Values

— Enumerator values are
integer constants

— By default, enumerator values
start at 0 and are incremented
by 1 for each following member

— Specific enumerator values
may be defined by the user

enum Weekday

{ Monday = 1,
Tuesday,
Wednesday,
Thur sday,
Fri day,
Sat ur day,
Sunday

i

¢ Example: enum Weekday Today
Tod = Wednesday;
oday voi d Print\Wekday(
‘deesday ‘ enum Weekday d)
{
printf(“Day: %\n”, d);
‘Day: 3 ‘ }
EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 13
Data Structures
* Enumerator Values
- Enumerator values are enum Veekday
integer constants { Monday = 2,
— By default, enumerator values Tuesday,
start at 0 and are incremented VSR,
) Thur sday,
by 1 for each following member Fri day,
— Specific enumerator values Sat ur day,
- Sunday = 1
may be defined by the user)
¢ Example: enum Weekday Today
Tod = Wednesday;
oday voi d Print\Wekday(
‘deesday ‘ enum Weekday d)
printf(“Day: %\n”, d);
‘Day: 4 ‘ }

EECS10: Computational Methods in ECE, Lecture 20

(c) 2008 R. Doemer

14

(c) 2008 R. Doemer

Lecture 20

EECS10: Computational Methods in ECE

Data Structures

+ Type definitions: t ypedef

— A typedef can be defined as an alias type for another type
— A typedef definition follows the same rules as a variable
definition

— Type definitions are usually used to abbreviate access to
user-defined types

* Examples:

typedef |ong Myl nteger;

typedef enum Weekday Day;
Day Today;

typedef struct Student Schol ar;
Schol ar Jane, John;

EECS10: Computational Methods in ECE, Lecture 20 (c) 2008 R. Doemer 15

(c) 2008 R. Doemer

Lecture 20

