EECS222C: SoC Software Synthesis

EECS 222C:
System-on-Chip Software Synthesis
Lecture 10

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 10: Overview

Course Administration

— Final exam

— Final course evaluation

Project Discussion

— JPEG Encoder Design Assignments
— Final report

Review of Embedded Software Synthesis
— SLDL Modeling, down to...

— Instruction Set Simulation

Outlook

— Next course on SoC Design

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Course Administration

* Final Exam

— Date and time

* Friday, December 12, 2008, 2-4pm
— Location

* Room ET201
— Format

* Delivery of Final Technical Report
— Option 1: Hardcopy
— Option 2: PDF by email to doener @ici . edu

* Hard deadline
— December 12, 2008, 4pm

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 3

Course Administration

» Final Course Evaluation
— 8t through 10" week
— Nov. 17, 2008 through Dec. 7, 2008, 11:45pm
— Closes end of this week (Sunday night)
— Online via EEE Evaluation application
» Evaluation of Course and Instructor
— Voluntary
— Anonymous
— Very valuable
» Help to improve this class!
— Please spend 5 minutes!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 4

(c) 2008 R. Doemer 2

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion: Assignment 1

* Login on Server via SSH

— epsilon. eecs. uci.edu

— Account infos have been emailed
 Install JPEG Encoder example
nkdi r eecs222c
cd eecs222c

gtar xvzf
/ hone/ doener / EECS222C _F08/j pegencoder.tar. gz

cd j pegencoder
— Make

» Become familiar with the application and its structure
— Browse and read the source files

— Combine all code into one single ANSI-C file
» Keep the functional hierarchy, we need it!
— Draw a block diagram of the functions and their communication

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 5

Project Discussion: Assignment 2

2. Convert JPEG Encoder application into SpecC Model
— Version 0
* Compile JPEG Encoder with SpecC compiler
* scc jpegencoder.sc —vv -ww
— Version 1
* Introduce test bench
— Stimulus behavior (ReadBnp)
— Design-under-Test behavior (JPEGencoder)
» Seq. child behaviors (DCT1, DCT2, Quant i ze, Zi gzag, Huf f nan)
» Communication through variables mapped to ports
— Monitor behavior (Di f f Gol den)
— Version 1.1
* Add timing to test bench
— Print encoding time for each block (in Stimulus and/or Monitor)
— Version 2.0
* Create a parallel model
— Change DUT execution to ‘par { }’
— Change communication to typed doubl e_handshake channels
— Version 2.1
» Create a pipelined model
— Change communication to typed queue channels

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 6

(c) 2008 R. Doemer 3

EECS222C: SoC Software Synthesis

Project Discussion

» Targeted Specification Model

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

Project Discussion: Assignment 4

2. Complete JPEG Encoder application into SpecC Model
— Version 0
* Compile JPEG Encoder with SpecC compiler
e scc jpegencoder.sc —vv -ww
— Version 1
* Introduce test bench
— Stimulus behavior (ReadBnp)
— Design-under-Test behavior (JPEGencoder)
» Seq. child behaviors (DCT1, DCT2, Quant i ze, Zi gzag, Huf f nan)
» Communication through variables mapped to ports
— Monitor behavior (Di f f Gol den)
— Version 1.1
* Add timing to test bench
— Print encoding time for each block (in Stimulus and/or Monitor)
— Version 2.0
* Create a parallel model
— Change DUT execution to ‘par { }’
— Change communication to typed doubl e_handshake channels
— Version 2.1
* Create a pipelined model
— Change communication to typed queue channels

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Project Discussion: Assignment 4

3. Simulate your JPEG Encoder model “V2.1” in SCE
— Setup
» Note that we will use the 2008 version of SCE for the JPEG Encoder:
source /opt/sce-20080601/ bi n/ setup. csh
rm-rf ~/.sce
cd j pegencoder
sce
— Create a new project in SCE
e Project->New
e Project->Settings
— Set verbosity level to 3 and warning level to 2
— Adjust any other options the compiler may need to compile your model
e Project->SaveAs “j pegencoder.sce”
— Load your design model into SCE
e File->Inport “jpegencoder.sc”
e Project->AddDesi gn
* Right-click on j pegencoder. sir in the project window, and
Renane the model to JPEGencSpec

— Compile and simulate your model in SCE

+ Validation->Conpile No warnings!
e Validation->Simlate Successful!
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 9

Project Discussion: Assignment 4

4. Analyze your JPEG Encoder model in SCE
— Setup
e ...continued from step 2 (previous page)
— View the structural hierachy chart
» Select the Mai n behavior in the behavior browser
* Right-click - >Chart
Double-click the chart to add a level of hierarchy
Vi ew >Connectivity

W ndow >Pri nt ... to file “j pegencoder . ps”
» Deliverables
— SpecC source file

. *jpegencoder.sc” One single/complete file!
— Hierarchy chart i L
. “j pegencoder. ps” One Chal"t Wlth conneCtIVIty!
. Due

— by Friday, Oct 31, 2008, at noon
— by email to doener @ici . edu with subject “EECS222C HW4”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 10

(c) 2008 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis

Project Discussion

» Excellent results from Assignment 4!

— 90% of submissions achieved scores of 95% or better
(although SpecC was completely new for most students)

» Continue design flow with a “perfect” model
— Improved version of “best” submission

» Re-formatted code to create “clean” SpecC source
— scc j pegencoder —sc2sc —i best_student _nodel . sc
-0 j pegencoder.sc —-vv —-ww —s| —sn —psi —pui
= Zero warnings
* Clean hierarchy
— scc j pegencoder —sc2sir
— sir_tree —blt jpegencoder.sir
* No global variables, no global functions
—sir_list =BCl +VF —lt jpegencoder.sir
* Proper communication from Huffman to Monitor
» Detailed timing for each encoded block
» Moved writing of “t est . j pg” file into Monitor

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 1

Project Discussion

+ “Perfect” Specification Model

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 12

(c) 2008 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion: Assignment 5

1. Examine the “perfect” JPEG Encoder source code
— [/ hone/ doener/ EECS222C _F08/ j pegencoder. sc
2. Examine the “perfect” JPEG Encoder model in SCE
— Setup
» Same as before (use SCE version 20080601)
— Browse the structural hierachy
— View the hierarchy chart
— Validate the model (compile and simulate)
— Profile, analyze, estimate the model
* Forasingle ARM_7TDMI CPU
e For complexity of “Computation”
. Deliverables
— Bar graph of Computation Profile
e “ARWTDM . ps”
. Due
— by Friday, Nov 7, 2008, at noon
— by email to doener @ici . edu with subject “EECS222C HW5”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 13

Project Discussion

» Design Space Exploration

— Estimation results o -=
Window View Arrange
* For ARM_?TDM' CPU Computation Profile
at 100 MHz e I

» For encoding of 180 blocks
— ChenDCT1: 10.41ms
— ChenDCT2: 10.41ms

— Quantize: 7.84ms
— Zigzag: 2.32ms
— Huffman: 8.88ms
actt actz = - it
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 14

(c) 2008 R. Doemer 7

EECS222C: SoC Software Synthesis

Project Discussion

» Design Space Exploration

— Timing back-annotation
» Automatic approach
— Use SCE Architecture Refinement
— Generate Architecture Model
» enable “Insert avg. delays”
— Estimated times are automatically inserted
» at granularity of leaf behaviors only!
» Problem: no per-block timing during simulation!
— Example: | behavi or ChenDCTA(...)
{

voi d nai n(voi d)
{ int vi, v2,

Better: o 10444200000u~
Per-Block Timing! whi | e(1)
{ waitfor 10411200000ull / 180;
Port1.receive(& n_block);
if (iter %2 == 1)
{ ...
EECS222C: SoC Software Synthesis, ‘coorare—o o EvvT T ToTTToT 15

Project Discussion: Assignment 6

» Design Space Exploration

1. Timing back-annotation
» Manual insertion of estimated computation delays
— Start from “perfect” specification model
»] pegencoder. sc
— Add timing statements (wai t f or after port.receive())
» ChenDCT1: 10411200ns /180
» ChenDCT2: 10411200ns /180

» Quantize: 7839030ns / 180
» Zigzag: 2316600ns / 180
» Huffman: 8882810ns / 180

— Save as timed model
» JpegTi ned. sc
* When executed, the resulting model should end at time 10574 ms:
— 10574: Monitor exits sinulation.

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 16

(c) 2008 R. Doemer

Lecture 10

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion: Assignment 6

* Design Space Exploration

2. Architecture Exploration

» Explore various system architectures

Use only ARM_7TDMI processors
— Use only 100MHz core clock frequency
— Use only 50MHz AMBA AHB bus
— Vary between 1 and 5 CPUs
— Vary the mapping of blocks in the DUT to CPUs

* Note:
Do not let the architecture refinement tool insert additional timing!
* Example:

— Use 3 CPUs, ARM1, ARM2, and ARM3
— Map DCT1 to ARM1
— Map DCT2 to ARM2
— Map Quantize, Zigzag, and Huffman to ARM3
* Note:
Without scheduling, any architecture model will end at time 10574ms

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 17

Project Discussion: Assignment 6

* Design Space Exploration
3. Scheduling Exploration
» Explore various scheduling strategies for each selected CPU
* Choose from
— Static scheduling
» with varying execution order
— Round-Robin scheduling
— Priority-based scheduling
» with varying priorities
« Example:
— 3 ARM CPUs with mapping as above
— ARM1 statically scheduled
— ARM2 statically scheduled
— ARMS3 scheduled with Round-Robin

* When executed, the example model should end at time
19154ms

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 18

(c) 2008 R. Doemer 9

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion: Assignment 6

+ Design Space Exploration

4. Deliverable

* Text file “JPEG _Expl or ati on. t xt” with table:
— “Best” mapping and scheduling for architecture with 1 CPU
— “Best” mapping and scheduling for architecture with 2 CPUs
— “Best” mapping and scheduling for architecture with 3 CPUs
— “Best” mapping and scheduling for architecture with 4 CPUs
— “Best” mapping and scheduling for architecture with 5 CPUs

« For each “best” architecture above, note the overall execution
time in the table.

. Due
— by Friday, Nov 14, 2008, at noon
— by email to doener @ici . edu with subject “EECS222C HW6”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 19

Project Discussion

» Design Space Exploration

— Estimation results
* For ARM_7TDMI CPU
at 100 MHz

» For encoding of 180 blocks = e < S 1

— ChenDCT1: 10.41ms (10411200ns / 180 = 58us)

— ChenDCT2: 10.41ms (10411200ns / 180 = 58us)

— Quantize: 7.84ms (7839030ns / 180 = 44us)

)

)

k=221us)

— Zigzag: 2.32ms (2316600ns / 180 = 13us
— Huffman: 8.88ms (8882810ns /180 = 49us
» Sum: 39.86ms (per block = 221us)
— Exploration results (in-class discussion)
» Trade-offs between Cost and Speed
* Limitations

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 20

(c) 2008 R. Doemer 10

EECS222C: SoC Software Synthesis

Project Discussion

+ Detailed Timing Analysis

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

Project Discussion

» Design Space Exploration: Cost/Speed Trade-off

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 10

11

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion

» Design Space Exploration

— Estimation results
e For ARM_7TDMI CPU
at 100 MHz
» For encoding of 180 blocks = e < S 1
— ChenDCT1: 10.41ms (10411200ns / 180 = 58us
— ChenDCT2: 10.41ms (10411200ns / 180 = 58us
— Quantize: 7.84ms (7839030ns / 180 = 44us

)
)
)
)
)
)

— Zigzag: 2.32ms (2316600ns / 180 = 13us
— Huffman: 8.88ms (8882810ns /180 = 49us
» Sum: 39.86ms (per block = 221us

— Reality-Check!

— 40ms for encoding the test JPEG image...
— ...is that fast or is it slow???

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 23

Project Discussion

» Design Space Exploration

— Estimation results
* For ARM_7TDMI CPU at 100 MHz
» For encoding of 180 blocks
— Sum: ~ 39.86ms (per block = 221us)
— Reality-Check
» about 40ms for encoding a 116x96 pixel image in B&W
— 116x96 pixel, that is only 0.011136 mega-pixels!
— Need about a factor 1000 to scale up to 11.1 mega pixels!
— Need another factor of 3 to support color!
» For a high-resolution (11 mega-pixel) photo: about 120sec!!
* We need to speed up by improving this architecture!
— Let’s add special-purpose hardware accelerators!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 24

(c) 2008 R. Doemer 12

EECS222C: SoC Software Synthesis

Project Discussion

» Timed and fixed “perfect” Model

» Does not support Bus-Functional Model (BFM) for CPU

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 25

Project Discussion

Platform Model

— Communication in j pegencoder can be refined to actual CPU bus
» 1/O units dat ai n and dat aout convert between

— Abstract test bench communication (typed double-handshake)
— BFM communication via CPU bus

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 26

(c) 2008 R. Doemer

Lecture 10

13

EECS222C: SoC Software Synthesis

Project Discussion

* Current SCE Limitations

— Instruction Set Simulator
» Only available for ARM_7TDMI
* Max. 1 system-wide instance
- RTOS
* Only available port for ARM_7TDMI is micro-OS |
* Requires priority-based scheduling
— with different priorities for each task
— Code generator
* CPU-internal channels limited to

— Type-less c_handshake
— Type-less c_doubl e_handshake
* CPU-external channels
— Type-less c_handshake
— Type-less and typed c_doubl e_handshake
— Type-less and typed c_queue

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

27

Project Discussion: Assignment 8

» Software Synthesis and Instruction Set Simulation
1. Similar to the demo given in Lecture 8,
refine the JPEG Encoder example down to
a pin- and cycle-accurate Instruction Set Model
» For details, see
— / hone/ doener / EECS222C_F08/ H8. t xt
» Platform Model is available here
— / hone/ doener / EECS222C _F08/ JpegPl at f orm sc
» Deliverables
— Hierarchy Chart of ISS Model
* Print out from SCE Chart window, "PlatformISS.pdf*
* Manually drawn version (as PDF, or on paper)
— Log of Instruction Set Simulation
» "PlatformISS.log"
* Due
— by Friday, Dec 5, 2008, at noon

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer

28

(c) 2008 R. Doemer

Lecture 10

14

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion

* Creating the Instruction Set Simulation Model

— System Architecture
* 4 processing elements (PEs)
— main ARM CPU (for quantize, zigzag, and huffman)
» Priority-based scheduling using microC-OS2 RTOS
— a hardware accellerator for the DCTs
— 2 1/0O units for data in- and output
* connected by
— AMBA-AHB bus (the built-in CPU bus)
— custom double-handshake bus
— Problems:
» C code generator inserts unwanted TaskDelay()
— See the work-around discussed on the course noteboard
= Bus-functional models “get stuck” after encoding for block 177
— Suspected deadlock in RTOS scheduler...
— TBD...
» Encoding is much too slow

— (~142 milliseconds for 177 blocks!) ...TBD...
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 29

Project Discussion
» Hierarchy Chart of Bus Functional Models
— PlatformComm
— PlatformCommC
— PlatformISS
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 30

(c) 2008 R. Doemer 15

EECS222C: SoC Software Synthesis Lecture 10

Project Discussion

* Final Technical Report
— Title
* Embedded Software Synthesis for a JPEG Encoder
— Contents
» Describe the software synthesis approach

+ Outline the major steps in the synthesis flow

» Use the JPEG Encoder application as case study
— Use results of the assignments!

» Conclude with a summary of the lessons learned
— Length
» about 10 pages

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 31

Project Discussion

* Final Technical Report: Suggested Outline
Title page
» Project title, author, abstract
Introduction
» Embedded SW design flow using SCE
Case Study on a JPEG Encoder
= Specification model
» Validation and estimation
Architecture exploration
* Bus functional model
= C code generation and cross-compilation
* Instruction Set Model
Conclusion
* Summary of results, lessons learned
— References
EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 32

(c) 2008 R. Doemer 16

EECS222C: SoC Software Synthesis

Review

« Embedded Software Synthesis
— SLDL Modeling
» Create a system specification model in SpecC
— Estimation and Exploration
» Design space exploration to find suitable target platform
— RTOS selection and targeting
» Task creation, scheduling, and communication
— Code Generation
» automatically generate ANSI-C code for cross-compilation
— Instruction Set Simulation (ISS)
» Simulate the execution on the target platform

— Cycle-accurate
— Pin-accurate

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 33

Review

« Embedded Software Generation from SLDL

— Software Design Flow in SCE

 Designer-controlled, automatic generation
of targeted ANSI-C code from SpecC SLDL

— Paper presented at ASPDAC 2004
* Haobo Yu, Rainer Doemer, Daniel Gajski

* “Embedded Software Generation
from System Level Design Languages”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 34

(c) 2008 R. Doemer

Lecture 10

17

EECS222C: SoC Software Synthesis

Outlook

* Next course on System-on-Chip Design
— EECS 222B
— “System-on-Chip Design and Exploration”
— Winter Quarter '09
— Instructor: Daniel D. Gajski

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2008 R. Doemer 35

(c) 2008 R. Doemer

Lecture 10

18

