EECS 222C: System-on-Chip Software Synthesis Lecture 2

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 2: Overview

- The Concept of a Model
- Abstraction Levels
- Top-down Design Methodology
- Invited Guest Lecture
 - System Level Design of JPEG Encoder
- Assignment 1

EECS222C: SoC Software Synthesis, Lecture 2

(c) 2008 R. Doemer

2

The Concept of a Model

- What is a Model?
 - Definition: A Model is an Abstraction of Reality.
- · Examples of Models
 - Toy car
 - · Abstract model of a real car
 - Smaller scale
 - Simpler, many details left out (no motor, no lights, ...)
 - Less expensive, less dangerous
 - Less, but sufficiently functional
 - Architectural blueprint of a house
 - · 2-dimensional model of a real building (3-dimensional)
 - Smaller, but to scale (floor plan, room sizes, window placement..)
 - Simpler, many details left out (no bricks, just paper)
 - Some features over-emphasized (e.g. layout of pipes, cables)
 - Less expensive, easy to estimate and modify

EECS222C: SoC Software Synthesis, Lecture 2

(c) 2008 R. Doemer

3

The Concept of a Model

- What is a Model?
 - Definition: A Model is an Abstraction of Reality.
- What is Abstraction?
 - Part of model building
 - Simplification or omission of details
 - · Some aspects of reality are simplified or omitted
 - Approach to reduce and factor out details
 - · so that one can focus on a few features at a time
- What is Modeling?
 - Model building
 - To make or construct a model

EECS222C: SoC Software Synthesis, Lecture 2

(c) 2008 R. Doemer

4

Embedded System Models

- · Modeling an Embedded System
 - Decide what feature/property/characteristic
 - is needed (and to what degree)
 - is not needed (can be abstracted away)
- Typical Features in System-on-Chip Models

- Functionality: important, most often needed

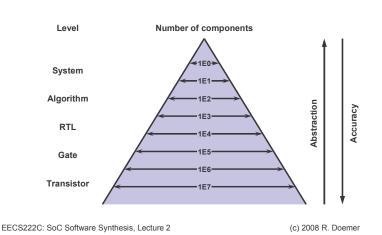
(to a varying degree of accuracy)

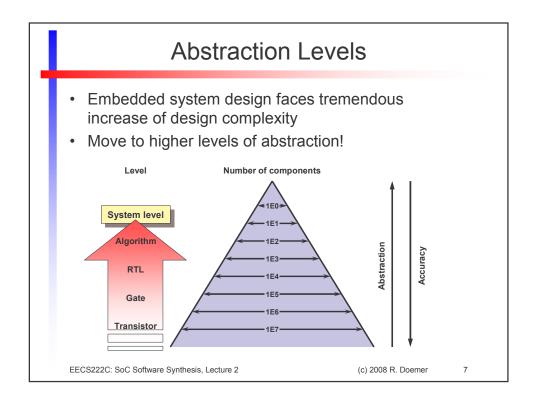
Executability: important, often needed

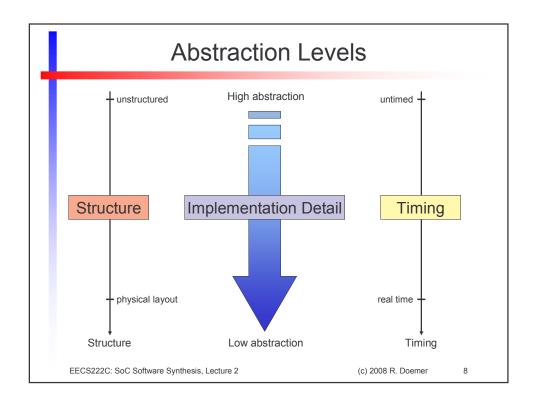
Structure: increasingly needed in later design phases
 Communication: needed to a varying degree of accuracy
 Timing: needed to a varying degree of accuracy
 Power consumption: sometimes needed, sometimes not

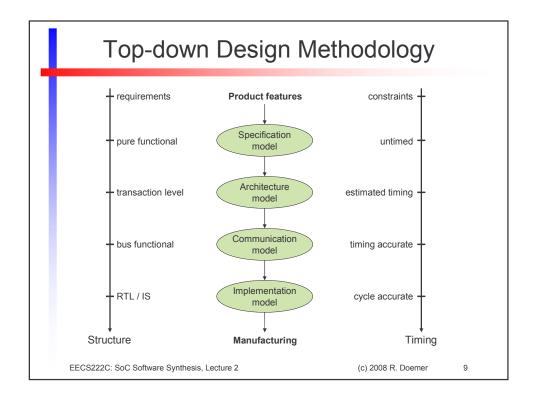
– Temperature: usually not needed

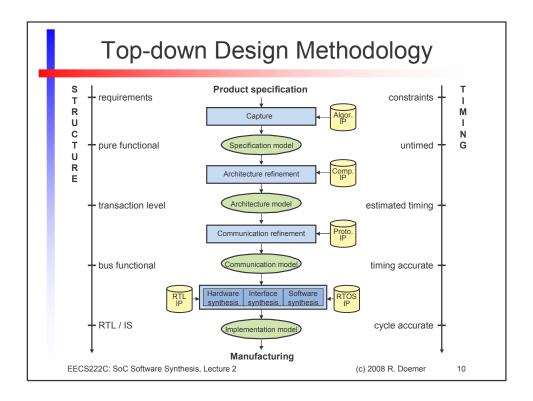
EECS222C: SoC Software Synthesis, Lecture 2


(c) 2008 R. Doemer


5


6


Abstraction Levels


Embedded system design faces tremendous increase of design complexity

Invited Guest Lecture

- "System Level Design of JPEG Encoder"
- · Speaker:
 - Dr. Samar Abdi
 Center of Embedded Computer Systems
 UC Irvine
- Abstract:
 - The talk presents a top-down system-level design flow with multiple levels of abstraction and discusses recent results of a case-study on a JPEG Encoder application mapped to a Multi-Processor System-on-Chip (MPSoC) platform.
 A demonstration that maps the application onto a FPGAbased prototyping board will conclude the presentation.

EECS222C: SoC Software Synthesis, Lecture 2

(c) 2008 R. Doemer

11

Assignment 1

- Login on Server via SSH
 - epsilon.eecs.uci.edu
 - Account infos have been emailed
- Install JPEG Encoder example
 - mkdir eecs222c
 - cd eecs222c
 - gtar xvzf

/home/doemer/EECS222C_F08/jpegencoder.tar.gz

- cd jpegencoder
- Make
- Become familiar with the application and its structure
 - Browse and read the source files
 - Combine all code into one single ANSI-C file
 - · Keep the functional hierarchy, we need it!
 - Draw a block diagram of the functions and their communication

EECS222C: SoC Software Synthesis, Lecture 2

(c) 2008 R. Doemer

12