EECS 222C: System-on-Chip Software Synthesis Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 5: Overview

- Project Discussion
 - Assignment 2
 - Assignment 3
- Assignment 4
- System-on-Chip Environment (SCE)
 - SCE System Design Flow
 - SCE Demonstration
- · Embedded Software
 - Execution Times
 - Embedded Operating Systems
 - Real-time Operating Systems (RTOS)
 - Scheduling
 - · Aperiodic scheduling

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

2

- 1. Practice SpecC Tools
 - Setup
 - source /opt/sce-20080601/bin/setup.csh
 - Examine simple examples
 - mkdir simple_tests
 - cd simple_tests
 - cp \$SPECC/examples/simple/* .
 - · 1
 - vi HelloWorld.sc
 - Practice the compiler
 - man scc
 - · scc HelloWorld -sc2out -vv -ww
 - Practice the simulator
 - · ./HelloWorld
 - Practice the tools
 - man sir_tree
 - scc Adder -sc2sir -o Adder.sir
 - sir_tree -bt Adder.sir FA

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

DONE.

3

Assignment 2

- 2. Convert JPEG Encoder application into SpecC Model
 - Version 0
 - · Compile JPEG Encoder with SpecC compiler
 - scc jpegencoder.sc -vv -ww

DONE.

- Version 1
 - Introduce test bench
 - Stimulus behavior (ReadBmp)
 - Design-under-Test behavior (JPEGencoder)
- DONE?
- » Seq. child behaviors (DCT1, DCT2, Quantize, Zigzag, Huffman)
- » Communication through variables mapped to ports
- Monitor behavior (DiffGolden)
- Version 1.1
 - Add timing to test bench

DONE??

- Print encoding time for each block (in Stimulus and/or Monitor)
- Version 2.0
 - Create a parallel model
 - Change DUT execution to 'par { }'

DONE??

- Change communication to typed double_handshake channels
- Version 2.1
 - · Create a pipelined model
 - Change communication to typed queue channels

DONE???

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

4

- 1. Become familiar with the System-on-Chip Environment (SCE)
 - Setup
 - · Note that we will use the 2004 version of SCE for the tutorial:
 - source /opt/sce-20041007/bin/setup.csh
 - rm -rf ~/.sce
 - · mkdir demo
 - cd demo
 - setup_demo
 - Open the SCE Tutorial document
 - acroread SCE_Tutorial/sce-tutorial.pdf &
 - To protect the environment and save some trees, please do not print the tutorial document! It contains 250 pages and you will likely read it only once...;-)
 - Follow the SCE Tutorial instructions
 - sce &

Skipped!

- Cleanup
 - · When done (or to start over), clean up your demo directory
 - cd ..
 - rm -rf demo

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

Assignment 3

- 2. Simulate your JPEG Encoder model in SCE Model "V2.1"?
 - Setup
 - · Note that we will use the 2008 version of SCE for the JPEG Encoder:
 - source /opt/sce-20080601/bin/setup.csh
 - rm -rf ~/.sce
 - · cd jpegencoder
 - sce
 - Create a new project in SCE
 - · Project->New
 - Project->Settings
 - Set verbosity level to 3 and warning level to 2
 - Adjust any other options the compiler may need to compile your model
 - Project->SaveAs "jpegencoder.sce"
 - Load your design model into SCE
 - File->Import "jpegencoder.sc"
 - Project->AddDesign
 - Right-click on jpegencoder.sir in the project window, and Rename the model to JPEGencSpec
 - Compile and simulate your model in SCE
 - Validation->Compile
 - Validation->Simulate

Successful?

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

6

(c) 2008 R. Doemer 3

5

- 3. Analyze your JPEG Encoder model in SCE
 - Setup
 - · ...continued from step 2 (previous page)
 - View the structural hierarchy chart
 - Select the Main behavior in the behavior browser
 - Right-click ->Chart
 - · Double-click the chart to add a level of hierarchy
 - View->Connectivity
 - ...
 - Window->Print... to file "jpegencoder.ps"
- Deliverables

Due

- SpecC source file
 - "jpegencoder.sc"
- Hierarchy chart
 - "jpegencoder.ps"

Model "V2.1"?

Successful? Complete?

- by Friday, Oct 24, 2008, at noon
- by email to doemer@uci.edu with subject "EECS222C HW3"

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

7

Assignment 4

- 1. Become familiar with the System-on-Chip Environment (SCE)
 - Setup
 - Note that we will use the 2003 version of SCE for the tutorial:
 - source /opt/sce-20030530/bin/setup.csh
 - rm -rf ~/.sce
 - · mkdir demo
 - cd demo
 - setup_demo
 - Open the SCE Tutorial document
 - acroread SCE_Tutorial/sce-tutorial.pdf &
 - To protect the environment and save some trees, please do not print the tutorial document!
 It contains 250 pages and you will likely read it only once...;-)
 - Follow the SCE Tutorial instructions
 - sce &
 - ...
 - Cleanup
 - · When done (or to start over), clean up your demo directory
 - cd ..
 - rm -rf demo

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

8

- 2. Complete JPEG Encoder application into SpecC Model
 - Version 0
 - · Compile JPEG Encoder with SpecC compiler
 - scc jpegencoder.sc -vv -ww
 - Version 1
 - · Introduce test bench
 - Stimulus behavior (ReadBmp)
 - Design-under-Test behavior (JPEGencoder)
 - » Seq. child behaviors (DCT1, DCT2, Quantize, Zigzag, Huffman)
 - » Communication through variables mapped to ports
 - Monitor behavior (DiffGolden)
 - Version 1.1
 - Add timing to test bench
 - Print encoding time for each block (in Stimulus and/or Monitor)
 - Version 2.0
 - · Create a parallel model
 - Change DUT execution to 'par { }'
 - Change communication to typed double_handshake channels
 - Version 2.1
 - · Create a pipelined model
 - Change communication to typed queue channels

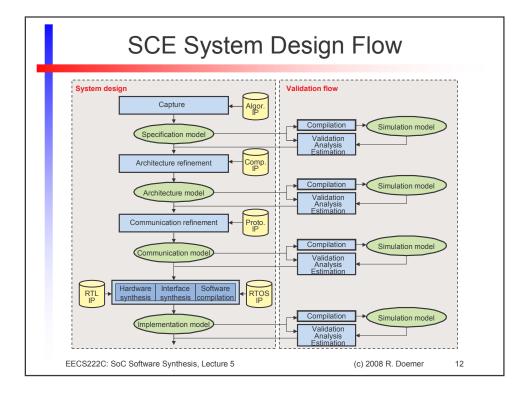
EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

9

Assignment 4

- 3. Simulate your JPEG Encoder model "V2.1" in SCE
 - Setup
 - Note that we will use the 2008 version of SCE for the JPEG Encoder:
 - source /opt/sce-20080601/bin/setup.csh
 - rm -rf ~/.sce
 - · cd jpegencoder
 - sce
 - Create a new project in SCE
 - · Project->New
 - Project->Settings
 - Set verbosity level to 3 and warning level to 2
 - Adjust any other options the compiler may need to compile your model
 - Project->SaveAs "jpegencoder.sce"
 - Load your design model into SCE
 - File->Import "jpegencoder.sc"
 - Project->AddDesign
 - Right-click on jpegencoder.sir in the project window, and Rename the model to JPEGencSpec
 - Compile and simulate your model in SCE
 - · Validation->Compile
 - Validation->Simulate


No warnings! Successful!

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

10

Assignment 4 Analyze your JPEG Encoder model in SCE Setup ...continued from step 2 (previous page) View the structural hierarhy chart Select the Main behavior in the behavior browser Right-click ->Chart Double-click the chart to add a level of hierarchy View->Connectivity Window->Print... to file "jpegencoder.ps" Deliverables SpecC source file "jpegencoder.sc" One single/complete file! Hierarchy chart "jpegencoder.ps" One chart with connectivity! Due by Friday, Oct 31, 2008, at noon by email to doemer@uci.edu with subject "EECS222C HW4" (c) 2008 R. Doemer EECS222C: SoC Software Synthesis, Lecture 5 11

SCE Demonstration

- · Design example: GSM Vocoder
 - Enhanced full-rate voice codec
 - GSM standard for mobile telephony (GSM 06.10)
 - · Lossy voice encoding/decoding
 - · Incoming speech samples @ 104 kbit/s
 - · Encoded bit stream @ 12.2 kbit/s
 - Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
 - Real-time constraint:
 - max. 20ms per speech frame (max. total of 3.26s for sample speech file)
 - SpecC specification model
 - 29 hierarchical behaviors (9 par, 10 seq, 10 fsm)
 - · 73 leaf behaviors
 - 9139 formatted lines of SpecC code (~13000 lines of original C code, including comments)

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

13

Embedded Software

- Chapter 4, part 1, of "Embedded System Design" by P. Marwedel (Univ. of Dortmund, Germany), Kluwer Academic Publishers, 2003.
 - Lecture5-es-marw-4a-aperiodic.ppt

EECS222C: SoC Software Synthesis, Lecture 5

(c) 2008 R. Doemer

14