EECS 222C: System-on-Chip Software Synthesis Lecture 6

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 6: Overview

- Project Discussion
 - Assignment 4
 - Status discussion
 - Assignment 5
- Embedded Software
 - Scheduling algorithms
 - · Aperiodic scheduling

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

2

Assignment 4

- 1. Become familiar with the System-on-Chip Environment (SCE)
 - Setup
 - Note that we will use the 2003 version of SCE for the tutorial:
 - source /opt/sce-20030530/bin/setup.csh
 - rm -rf ~/.sce
 - mkdir demo
 - cd demo
 - setup_demo
 - Open the SCE Tutorial document
 - acroread SCE_Tutorial/sce-tutorial.pdf &
 - To protect the environment and save some trees, please do not print the tutorial document! It contains 250 pages and you will likely read it only once...;-)
 - Follow the SCE Tutorial instructions
 - sce &
 - • •
 - Cleanup
 - · When done (or to start over), clean up your demo directory
 - cd ..
 - rm -rf demo

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

3

Assignment 4

- Complete JPEG Encoder application into SpecC Model
 - Version 0
 - Compile JPEG Encoder with SpecC compiler
 - scc jpegencoder.sc -vv -ww
 - Version 1
 - Introduce test bench
 - Stimulus behavior (ReadBmp)
 - Design-under-Test behavior (JPEGencoder)
 - » Seq. child behaviors (DCT1, DCT2, Quantize, Zigzag, Huffman)
 - » Communication through variables mapped to ports
 - Monitor behavior (DiffGolden)
 - Version 1.1
 - · Add timing to test bench
 - Print encoding time for each block (in Stimulus and/or Monitor)
 - Version 2.0
 - · Create a parallel model
 - Change DUT execution to 'par { }'
 - Change communication to typed double_handshake channels
 - Version 2.1
 - · Create a pipelined model
 - Change communication to typed queue channels

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

4

Assignment 4

- 3. Simulate your JPEG Encoder model "V2.1" in SCE
 - Setup
 - Note that we will use the 2008 version of SCE for the JPEG Encoder:
 - source /opt/sce-20080601/bin/setup.csh
 - rm -rf ~/.sce
 - · cd jpegencoder
 - sce
 - Create a new project in SCE
 - Project->New
 - Project->Settings
 - Set verbosity level to 3 and warning level to 2
 - Adjust any other options the compiler may need to compile your model
 - Project->SaveAs "jpegencoder.sce"
 - Load your design model into SCE
 - File->Import "jpegencoder.sc"
 - Project->AddDesign
 - Right-click on jpegencoder.sir in the project window, and Rename the model to JPEGencSpec
 - Compile and simulate your model in SCE
 - Validation->Compile
 - Validation->Simulate

EECS222C: SoC Software Synthesis, Lecture 6

No warnings! Successful!

(c) 2008 R. Doemer

5

Assignment 4

- 4. Analyze your JPEG Encoder model in SCE
 - Setup
 - ...continued from step 2 (previous page)
 - View the structural hierarchy chart
 - Select the Main behavior in the behavior browser
 - Right-click ->Chart
 - · Double-click the chart to add a level of hierarchy
 - View->Connectivity
 -
 - · Window->Print... to file "jpegencoder.ps"
- Deliverables
 - SpecC source file
 - "jpegencoder.sc" One single/complete file!
 - Hierarchy chart
 - "jpegencoder.ps" One chart with connectivity!
- Due
 - by Friday, Oct 31, 2008, at noon
 - by email to doemer@uci.edu with subject "EECS222C HW4"

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

6

Project Discussion

- Excellent results from Assignment 4!
 - 90% of submissions achieved scores of 95% or better (although SpecC was completely new for most students)
- Continue design flow with a "perfect" model
 - Improved version of "best" submission
 - · Re-formatted code to create "clean" SpecC source
 - scc jpegencoder -sc2sc -i best_student_model.sc -o jpegencoder.sc -vv -www -sl -sn -psi -pui
 - · Zero warnings
 - Clean hierarchy
 - scc jpegencoder -sc2sir
 - sir_tree -blt jpegencoder.sir
 - · No global variables, no global functions
 - sir_list -BCI +VF -lt jpegencoder.sir
 - · Proper communication from Huffman to Monitor
 - · Detailed timing for each encoded block
 - · Moved writing of "test.jpg" file into Monitor

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

7

Assignment 5

- 1. Examine the "perfect" JPEG Encoder source code
 - /home/doemer/EECS222C_F08/jpegencoder.sc
- 2. Examine the "perfect" JPEG Encoder model in SCE
 - Setup
 - Same as before (use SCE version 20080601)
 - Browse the structural hierarchy
 - View the hierarchy chart
 - Validate the model (compile and simulate)
 - Profile, analyze, estimate the model
 - For a single ARM_7TDMI CPU
 - · For complexity of "Computation"
- Deliverables
 - Bar graph of Computation Profile
 - "ARM7TDMI.ps"
- Due
 - by Friday, Nov 7, 2008, at noon
 - by email to doemer@uci.edu with subject "EECS222C HW5"

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

8

Embedded Software

- Embedded Software
 - Scheduling algorithms
 - · Aperiodic scheduling
- Chapter 4, part 1b, of "Embedded System Design" by P. Marwedel (Univ. of Dortmund, Germany), Kluwer Academic Publishers, 2003.
 - Lecture5-es-marw-4a-aperiodic.ppt

EECS222C: SoC Software Synthesis, Lecture 6

(c) 2008 R. Doemer

9