EECS 222C: System-on-Chip Software Synthesis Lecture 8

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering Electrical Engineering and Computer Science University of California, Irvine

Lecture 8: Overview

- Project Discussion
 - Assignment 6
 - · Architecture Exploration
 - Scheduling Exploration
 - Exploration results
 - · Trade-offs between Cost and Speed
 - Limitations
- Invited Guest Lecture
 - Systematic Generation of Embedded Software from High-level Models
- Assignment 7

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

2

Assignment 6

- Design Space Exploration
 - 1. Timing back-annotation
 - · Manual insertion of estimated computation delays
 - Start from "perfect" specification model
 - » jpegencoder.sc
 - Add timing statements (waitfor after port.receive())
 - » ChenDCT1: 10411200ns / 180
 » ChenDCT2: 10411200ns / 180
 » Quantize: 7839030ns / 180
 » Zigzag: 2316600ns / 180
 » Huffman: 8882810ns / 180
 - Save as timed model
 - » JpegTimed.sc
 - When executed, the resulting model should end at time 10574ms:
 - 10574: Monitor exits simulation.

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

3

Assignment 6

- Design Space Exploration
 - 2. Architecture Exploration
 - · Explore various system architectures
 - Use only ARM_7TDMI processors
 - Use only 100MHz core clock frequency
 - Use only 50MHz AMBA AHB bus
 - Vary between 1 and 5 CPUs
 - Vary the mapping of blocks in the DUT to CPUs
 - Note:

Do not let the architecture refinement tool insert additional timing!

- Example:
 - Use 3 CPUs, ARM1, ARM2, and ARM3
 - Map DCT1 to ARM1
 - Map DCT2 to ARM2
 - Map Quantize, Zigzag, and Huffman to ARM3
- Note:

Without scheduling, any architecture model will end at time 10574ms

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

4

Assignment 6

- Design Space Exploration
 - 3. Scheduling Exploration
 - Explore various scheduling strategies for each selected CPU
 - Choose from
 - Static scheduling
 - » with varying execution order
 - Round-Robin scheduling
 - Priority-based scheduling
 - » with varying priorities
 - Example:
 - 3 ARM CPUs with mapping as above
 - ARM1 statically scheduled
 - ARM2 statically scheduled
 - ARM3 scheduled with Round-Robin
 - When executed, the example model should end at time 19154ms

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

5

Assignment 6

- Design Space Exploration
 - 4. Deliverable
 - Text file "JPEG_Exploration.txt" with table:
 - "Best" mapping and scheduling for architecture with 1 CPU
 - "Best" mapping and scheduling for architecture with 2 CPUs
 - "Best" mapping and scheduling for architecture with 3 CPUs"Best" mapping and scheduling for architecture with 4 CPUs
 - "Best" mapping and scheduling for architecture with 5 CPUs
 - For each "best" architecture above, note the overall execution time in the table.
- Due
 - by Friday, Nov 14, 2008, at noon
 - by email to doemer@uci.edu with subject "EECS222C HW6"

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

6

Project Discussion

- Design Space Exploration
 - Estimation results
 - For ARM_7TDMI CPU at 100 MHz
 - · For encoding of 180 blocks
 - ChenDCT1: 10.41ms (10411200ns / 180 ≈ 58us)
 - ChenDCT2: 10.41ms (10411200ns / 180 ≈ 58us)
 - Quantize: 7.84ms (7839030ns / 180 ≈ 44us)
 - Zigzag: 2.32ms (2316600ns / 180 ≈ 13us)
 - Huffman: 8.88ms (8882810ns / 180 ≈ 49us)

» Sum: 39.86ms (per block ≈ 221us)

- Exploration results (in-class discussion)
 - · Trade-offs between Cost and Speed
 - Limitations

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

7

Invited Guest Lecture

- "Systematic Generation of Embedded Software from High-level Models"
- Speaker:
 - Dr. Gunar Schirner
 Center of Embedded Computer Systems
 UC Irvine
- Abstract:
 - This talk presents a systematic approach to automatically generate embedded software from an abstract system model. The software generation encompasses RTOS-based multi-tasking, driver generation for external and internal communication, and assembly of the final target binary. The presentation will conclude with a live demonstration that synthesizes embedded software for an example from the automotive domain.

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

8

Assignment 7

- · Software Synthesis and Instruction Set Simulation
 - 1. Follow the demo given in Lecture 8
 - · Detailed instructions are provided in
 - /home/doemer/EECS222C_F08/lecture8/Lecture8.txt
 - · on our server
 - epsilon.eecs.uci.edu
 - 2. Note the major steps in the software synthesis process
 - 3. Discuss any issues and/or questions on the noteboard
- Deliverable
 - none (but be prepared to perform similar software synthesis and instruction set simulation for our JPEG Encoder example in the next assignment...;-)
- Due
 - by Friday, Nov 21, 2008, at noon

EECS222C: SoC Software Synthesis, Lecture 8

(c) 2008 R. Doemer

9