EECS222C: SoC Software Synthesis

EECS 222C:
System-on-Chip Software Synthesis
Lecture 8

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 8: Overview

* Project Discussion

— Assignment 6
 Architecture Exploration
» Scheduling Exploration

— Exploration results
» Trade-offs between Cost and Speed
* Limitations

* Invited Guest Lecture
— Systematic Generation of Embedded Software

from High-level Models

* Assignment 7

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 8

EECS222C: SoC Software Synthesis

Assignment 6

Design Space Exploration

1. Timing back-annotation
» Manual insertion of estimated computation delays
— Start from “perfect” specification model
»] pegencoder. sc
— Add timing statements (wai t f or after port.receive())
» ChenDCT1: 10411200ns /180
» ChenDCT2: 10411200ns /180

» Quantize: 7839030ns / 180
» Zigzag: 2316600ns / 180
» Huffman: 8882810ns / 180

— Save as timed model
» JpegTi ned. sc

* When executed, the resulting model should end at time 10574 ms:
— 10574: Monitor exits sinulation.

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer 3

Assignment 6

Design Space Exploration

2. Architecture Exploration
» Explore various system architectures
— Use only ARM_7TDMI processors
— Use only 100MHz core clock frequency
— Use only 50MHz AMBA AHB bus
— Vary between 1 and 5 CPUs
— Vary the mapping of blocks in the DUT to CPUs

* Note:
Do not let the architecture refinement tool insert additional timing!
* Example:

— Use 3 CPUs, ARM1, ARM2, and ARM3
— Map DCT1 to ARM1
— Map DCT2 to ARM2
— Map Quantize, Zigzag, and Huffman to ARM3
* Note:
Without scheduling, any architecture model will end at time 10574ms

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer 4

(c) 2008 R. Doemer

Lecture 8

EECS222C: SoC Software Synthesis

Assignment 6

+ Design Space Exploration

3. Scheduling Exploration
Explore various scheduling strategies for each selected CPU
Choose from

Static scheduling

» with varying execution order
Round-Robin scheduling
Priority-based scheduling

» with varying priorities

Example:

3 ARM CPUs with mapping as above
ARM1 statically scheduled

ARM2 statically scheduled

ARM3 scheduled with Round-Robin

When executed, the example model should end at time
19154ms

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer

Assignment 6

+ Design Space Exploration

4. Deliverable
Text file “JPEG_Expl or ati on. t xt” with table:

. Due

For each “best” architecture above, note the overall execution

“Best” mapping and scheduling for architecture with 1 CPU

“Best” mapping and scheduling for architecture with 2 CPUs
“Best” mapping and scheduling for architecture with 3 CPUs
“Best” mapping and scheduling for architecture with 4 CPUs
“Best” mapping and scheduling for architecture with 5 CPUs

time in the table.

— by Friday, Nov 14, 2008, at noon
— by email to doener @ici . edu with subject “EECS222C HW6”

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 8

EECS222C: SoC Software Synthesis Lecture 8

Project Discussion

» Design Space Exploration

— Estimation results
e For ARM_7TDMI CPU
at 100 MHz
» For encoding of 180 blocks = e < S 1
— ChenDCT1: 10.41ms (10411200ns / 180 = 58us
— ChenDCT2: 10.41ms (10411200ns / 180 = 58us
— Quantize: 7.84ms (7839030ns / 180 = 44us

)
)
)
)
)
)

— Zigzag: 2.32ms (2316600ns / 180 = 13us
— Huffman: 8.88ms (8882810ns /180 = 49us
» Sum: 39.86ms (per block = 221us

— Exploration results (in-class discussion)
» Trade-offs between Cost and Speed
* Limitations

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer 7

Invited Guest Lecture

+ "Systematic Generation of Embedded Software
from High-level Models*

* Speaker:

— Dr. Gunar Schirner
Center of Embedded Computer Systems
UC Irvine

e Abstract:

— This talk presents a systematic approach to automatically
generate embedded software from an abstract system
model. The software generation encompasses RTOS-based
multi-tasking, driver generation for external and internal
communication, and assembly of the final target binary.

The presentation will conclude with a live demonstration that
synthesizes embedded software for an example from the
automotive domain.

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer 8

(c) 2008 R. Doemer 4

EECS222C: SoC Software Synthesis

Assignment 7

+ Software Synthesis and Instruction Set Simulation

1. Follow the demo given in Lecture 8

» Detailed instructions are provided in
e /hone/ doener/ EECS222C FO08/ | ect ur e8/ Lect ur e8. t xt

* on our server
e epsilon.eecs. uci.edu

2. Note the major steps in the software synthesis process
3. Discuss any issues and/or questions on the noteboard

» Deliverable
— none (but be prepared to perform similar software synthesis
and instruction set simulation for our JPEG Encoder example
in the next assignment... ;-)
* Due
— by Friday, Nov 21, 2008, at noon

EECS222C: SoC Software Synthesis, Lecture 8 (c) 2008 R. Doemer 9

(c) 2008 R. Doemer

Lecture 8

