EECS222C: SoC Software Synthesis

EECS 222C:
System-on-Chip Software Synthesis
Lecture 9

Rainer Domer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 9: Overview

* Project Discussion
— Assignment 7

— Assignment 8
* Instruction Set Simulation (ISS) Model

« Embedded Operating Systems

— General requirements

— Real-time Operating Systems (RTOS)
« RTOS Example: MicroC/OS-ll

— Overview

— Structure

— Kernel Services

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer

(c) 2008 R. Doemer

Lecture 9

EECS222C: SoC Software Synthesis

Assignment 7

+ Software Synthesis and Instruction Set Simulation

1. Follow the demo given in Lecture 8

» Detailed instructions are provided in
e /hone/ doener/ EECS222C FO08/ | ect ur e8/ Lect ur e8. t xt

* on our server
e epsilon.eecs. uci.edu

2. Note the major steps in the software synthesis process
3. Discuss any issues and/or questions on the noteboard
» Deliverable

— none (but be prepared to perform similar software synthesis
and instruction set simulation for our JPEG Encoder example
in the next assignment... ;-)

* Due
— by Friday, Nov 21, 2008, at noon

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 3

Project Discussion

» Design Space Exploration

— Estimation results
* For ARM_7TDMI CPU
at 100 MHz
» For encoding of 180 blocks = e < S 1
— ChenDCT1: 10.41ms (10411200ns / 180 = 58us
— ChenDCT2: 10.41ms (10411200ns / 180 = 58us
— Quantize: 7.84ms (7839030ns / 180 = 44us

)
)
)
)
)
k=221us)

— Zigzag: 2.32ms (2316600ns / 180 = 13us
— Huffman: 8.88ms (8882810ns /180 = 49us
» Sum: 39.86ms (per block = 221us

— Reality-Check!

— 40ms for encoding the test JPEG image...
— ...is that fast or is it slow???

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 4

(c) 2008 R. Doemer

Lecture 9

EECS222C: SoC Software Synthesis Lecture 9

Project Discussion

* Design Space Exploration

— Estimation results
» For ARM_7TDMI CPU at 100 MHz
» For encoding of 180 blocks
— Sum: ~ 39.86ms (per block = 221us)
— Reality-Check
» about 40ms for encoding a 116x96 pixel image in B&W
— 116x96 pixel, that is only 0.011136 mega-pixels!
— Need about a factor 1000 to scale up to 11.1 mega pixels!
— Need another factor of 3 to support color!
» For a high-resolution (11 mega-pixel) photo: about 120sec!!
* We need to speed up by improving this architecture!
— Let’s add special-purpose hardware accelerators!

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 5

Project Discussion

» Timed and fixed “perfect” Model

» Does not support Bus-Functional Model (BFM) for CPU

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 6

(c) 2008 R. Doemer 3

EECS222C: SoC Software Synthesis Lecture 9

Project Discussion

e Platform Model

— Communication in j pegencoder can be refined to actual CPU bus
 1/O units dat ai n and dat aout convert between

— Abstract test bench communication (typed double-handshake)
— BFM communication via CPU bus

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 7

Project Discussion

e Current SCE Limitations

— Instruction Set Simulator
* Only available for ARM_7TDMI
* Max. 1 system-wide instance
- RTOS
* Only available port for ARM_7TDMI is micro-OS I
* Requires priority-based scheduling
— with different priorities for each task
— Code generator
* CPU-internal channels limited to

— Type-less c_handshake
— Type-less c_doubl e_handshake
* CPU-external channels
— Type-less c_handshake
— Type-less and typed c_doubl e_handshake
— Type-less and typed c_queue

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 8

(c) 2008 R. Doemer 4

EECS222C: SoC Software Synthesis

Assignment 8

» Software Synthesis and Instruction Set Simulation
1. Similar to the demo given in Lecture 8,
refine the JPEG Encoder example down to
a pin- and cycle-accurate Instruction Set Model
» For details, see
— / hone/ doener / EECS222C_F08/ H8. t xt
» Platform Model is available here
— / hone/ doener / EECS222C _F08/ JpegPl atf orm sc
» Deliverables
— Hierarchy Chart of ISS Model
* Print out from SCE Chart window, "PlatformISS.pdf*
* Manually drawn version (as PDF, or on paper)
— Log of Instruction Set Simulation
* "PlatformISS.log"
* Due
— by Friday, Dec 5, 2008, at noon

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 9

Embedded Operating Systems

+ Embedded Operating Systems
— General requirements
— Real-time Operating Systems (RTOS)

» Chapter 4, part 3, of
‘Embedded System Design”
by P. Marwedel (Univ. of Dortmund, Germany),
Kluwer Academic Publishers, 2003.

— Lecture9-es-marw4c-rtos. ppt

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 10

(c) 2008 R. Doemer

Lecture 9

EECS222C: SoC Software Synthesis

Embedded Operating Systems

« Example: MicroC/OS-lI
— Overview
» multi-tasking real-time kernel
« real-time support (most kernel functions deterministic)
» task management
* priority scheduling
* preemption
« ROM’able (executable from firmware)
— memory footprint about 20 KB

= portable (to over 40 different processor architectures, 8-64bit)
— about 5500 lines of ANSI-C source code
— small amount of processor-specific assembly code

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 11

Embedded Operating Systems

° EXa m p I e . ‘ Application Softwarc ‘
M ICFOC/OS | | nC/0S-11 puC/OS-11 Cont.
(Processor-Independent Code) (Application ~Specific Code)
— Structure
0s_core.c
os_flag.c
os_mbox.c
os_mutex.c os_cfg.h
0s_q.c includes.h
08_sem.c
os_task.c
os_lime.c
ucos-ii.c
ucos-ii.h
uC/OS-1I Port
(Processor-Speeilic Code)
os_cpu.h
0$_cpu_c.c
os_cpu_a.S
software
hardware
CPU | | Timer
EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 12

(c) 2008 R. Doemer

Lecture 9

EECS222C: SoC Software Synthesis Lecture 9

Embedded Operating Systems

« Example: MicroC/OS-lI

— Kernel Services

» Task management
— up to 56 application tasks
— priority-based scheduling

* Time management
— system timer interrupt (10ms — 100ms)
— 32-bit tick counter

» Semaphore management
— inter-task communication through shared memory
— semaphore API

* Mutex management
— binary semaphore

* Memory management
— dynamic memory allocation (with fixed block size)

EECS222C: SoC Software Synthesis, Lecture 9 (c) 2008 R. Doemer 13

(c) 2008 R. Doemer 7

