
1

Chapter 11: File System Chapter 11: File System
ImplementationImplementation

11.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 11: File System ImplementationChapter 11: File System Implementation

� File-System Structure

� File-System Implementation

� Directory Implementation

� Allocation Methods

� Free-Space Management

� Efficiency and Performance

� Recovery

� Log-Structured File Systems

� NFS

� Example: WAFL File System

2

11.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ObjectivesObjectives

� To describe the details of implementing local file systems and
directory structures

� To describe the implementation of remote file systems

� To discuss block allocation and free-block algorithms and trade-offs

11.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FileFile--System StructureSystem Structure

� File structure

� Logical storage unit

� Collection of related information

� File system resides on secondary storage (disks)

� File system organized into layers

� File control block – storage structure consisting of information
about a file

3

11.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Layered File SystemLayered File System

11.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

A Typical File Control BlockA Typical File Control Block

4

11.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InIn--Memory File System StructuresMemory File System Structures

� The following figure illustrates the necessary file system structures
provided by the operating systems.

� Figure 12-3(a) refers to opening a file.

� Figure 12-3(b) refers to reading a file.

11.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

InIn--Memory File System StructuresMemory File System Structures

5

11.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Virtual File SystemsVirtual File Systems

� Virtual File Systems (VFS) provide an object-oriented way of
implementing file systems.

� VFS allows the same system call interface (the API) to be used for
different types of file systems.

� The API is to the VFS interface, rather than any specific type of file
system.

11.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of Virtual File SystemSchematic View of Virtual File System

6

11.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Directory ImplementationDirectory Implementation

� Linear list of file names with pointer to the data blocks.

� simple to program

� time-consuming to execute

� Hash Table – linear list with hash data structure.

� decreases directory search time

� collisions – situations where two file names hash to the same
location

� fixed size

11.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Allocation MethodsAllocation Methods

� An allocation method refers to how disk blocks are allocated for
files:

� Contiguous allocation

� Linked allocation

� Indexed allocation

7

11.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

� Each file occupies a set of contiguous blocks on the disk

� Simple – only starting location (block #) and length (number
of blocks) are required

� Random access

� Wasteful of space (dynamic storage-allocation problem)

� Files cannot grow

11.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous Allocation of Disk SpaceContiguous Allocation of Disk Space

8

11.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Contiguous AllocationContiguous Allocation

� Mapping from logical to physical

LA/512

Q

R

Block to be accessed = ! + starting address
Displacement into block = R

11.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ExtentExtent--Based SystemsBased Systems

� Many newer file systems (I.e. Veritas File System) use a modified
contiguous allocation scheme

� Extent-based file systems allocate disk blocks in extents

� An extent is a contiguous block of disks

� Extents are allocated for file allocation

� A file consists of one or more extents.

9

11.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked AllocationLinked Allocation

� Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

pointerblock =

11.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked AllocationLinked Allocation

10

11.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Allocation (Cont.)Linked Allocation (Cont.)

� Simple – need only starting address

� Free-space management system – no waste of space

� No random access

� Mapping

Block to be accessed is the Qth block in the linked chain of
blocks representing the file.
Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by MS-DOS
and OS/2.

LA/511
Q

R

11.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FileFile--Allocation TableAllocation Table

11

11.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed AllocationIndexed Allocation

� Brings all pointers together into the index block.

� Logical view.

index table

11.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of Indexed AllocationExample of Indexed Allocation

12

11.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation (Cont.)Indexed Allocation (Cont.)

� Need index table

� Random access

� Dynamic access without external fragmentation, but have
overhead of index block.

� Mapping from logical to physical in a file of maximum size
of 256K words and block size of 512 words. We need only
1 block for index table.

LA/512
Q

R

Q = displacement into index table
R = displacement into block

11.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation Indexed Allocation –– Mapping (Cont.)Mapping (Cont.)

� Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

� Linked scheme – Link blocks of index table (no limit on
size).

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

13

11.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation Indexed Allocation –– Mapping (Cont.)Mapping (Cont.)

� Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

11.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Indexed Allocation Indexed Allocation –– Mapping (Cont.)Mapping (Cont.)

�

outer-index

index table file

14

11.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)Combined Scheme: UNIX (4K bytes per block)

11.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FreeFree--Space ManagementSpace Management

� Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =

�
�

� 0 � block[i] free

1 � block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

15

11.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FreeFree--Space Management (Cont.)Space Management (Cont.)

� Bit map requires extra space

� Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

� Easy to get contiguous files

� Linked list (free list)

� Cannot get contiguous space easily

� No waste of space

� Grouping

� Counting

11.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

FreeFree--Space Management (Cont.)Space Management (Cont.)

� Need to protect:

� Pointer to free list

� Bit map

� Must be kept on disk

� Copy in memory and disk may differ

� Cannot allow for block[i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk

� Solution:

� Set bit[i] = 1 in disk

� Allocate block[i]

� Set bit[i] = 1 in memory

16

11.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Linked Free Space List on DiskLinked Free Space List on Disk

11.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Efficiency and PerformanceEfficiency and Performance

� Efficiency dependent on:

� disk allocation and directory algorithms

� types of data kept in file’s directory entry

� Performance

� disk cache – separate section of main memory for frequently
used blocks

� free-behind and read-ahead – techniques to optimize
sequential access

� improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

17

11.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

RecoveryRecovery

� Consistency checking – compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies

� Use system programs to back up data from disk to another storage
device (floppy disk, magnetic tape, other magnetic disk, optical)

� Recover lost file or disk by restoring data from backup

11.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Log Structured File SystemsLog Structured File Systems

� Log structured (or journaling) file systems record each update to
the file system as a transaction

� All transactions are written to a log

� A transaction is considered committed once it is written to the
log

� However, the file system may not yet be updated

� The transactions in the log are asynchronously written to the file
system

� When the file system is modified, the transaction is removed
from the log

� If the file system crashes, all remaining transactions in the log must
still be performed

18

11.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Sun Network File System (NFS)The Sun Network File System (NFS)

� An implementation and a specification of a software system for
accessing remote files across LANs (or WANs)

� The implementation is part of the Solaris and SunOS operating
systems running on Sun workstations using an unreliable datagram
protocol (UDP/IP protocol and Ethernet

11.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)NFS (Cont.)

� Interconnected workstations viewed as a set of independent
machines with independent file systems, which allows sharing
among these file systems in a transparent manner

� A remote directory is mounted over a local file system directory

� The mounted directory looks like an integral subtree of the
local file system, replacing the subtree descending from the
local directory

� Specification of the remote directory for the mount operation is
nontransparent; the host name of the remote directory has to
be provided

� Files in the remote directory can then be accessed in a
transparent manner

� Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

19

11.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS (Cont.)NFS (Cont.)

� NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network architectures;
the NFS specifications independent of these media

� This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces

� The NFS specification distinguishes between the services provided
by a mount mechanism and the actual remote-file-access services

11.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Independent File SystemsThree Independent File Systems

20

11.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Mounting in NFS Mounting in NFS

Mounts Cascading mounts

11.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Mount ProtocolNFS Mount Protocol

� Establishes initial logical connection between server and client

� Mount operation includes name of remote directory to be mounted and
name of server machine storing it

� Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

� Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

� Following a mount request that conforms to its export list, the server
returns a file handle—a key for further accesses

� File handle – a file-system identifier, and an inode number to identify
the mounted directory within the exported file system

� The mount operation changes only the user’s view and does not affect
the server side

21

11.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS ProtocolNFS Protocol

� Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

� searching for a file within a directory

� reading a set of directory entries

� manipulating links and directories

� accessing file attributes

� reading and writing files

� NFS servers are stateless; each request has to provide a full set of
arguments

(NFS V4 is just coming available – very different, stateful)

� Modified data must be committed to the server’s disk before results
are returned to the client (lose advantages of caching)

� The NFS protocol does not provide concurrency-control
mechanisms

11.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Three Major Layers of NFS Architecture Three Major Layers of NFS Architecture

� UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors)

� Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according to
their file-system types

� The VFS activates file-system-specific operations to handle
local requests according to their file-system types

� Calls the NFS protocol procedures for remote requests

� NFS service layer – bottom layer of the architecture

� Implements the NFS protocol

22

11.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic View of NFS Architecture Schematic View of NFS Architecture

11.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS PathNFS Path--Name TranslationName Translation

� Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of component
name and directory vnode

� To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names

23

11.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

NFS Remote OperationsNFS Remote Operations

� Nearly one-to-one correspondence between regular UNIX system
calls and the NFS protocol RPCs (except opening and closing files)

� NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance

� File-blocks cache – when a file is opened, the kernel checks with
the remote server whether to fetch or revalidate the cached
attributes

� Cached file blocks are used only if the corresponding cached
attributes are up to date

� File-attribute cache – the attribute cache is updated whenever new
attributes arrive from the server

� Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

End of Chapter 11End of Chapter 11

