Chapter 2. Operating-System Structures
QIBBDDIGIBB DI IIBPIIGIIBIIIG

Chapter 2: Operating-System Structures

Operating System Services

User Operating System Interface

System Calls

Types of System Calls

System Programs

Operating System Design and Implementation
Operating System Structure

Virtual Machines

Operating System Generation

System Boot

Operating System Concepts 2.2 Silberschatz, Galvin and Gagne ©2005

Objectives

m To describe the services an operating system provides to users,
processes, and other systems

To discuss the various ways of structuring an operating system

To explain how operating systems are installed and customized
and how they boot

R

=
/

Operating System Concepts 23 Silberschatz, Galvin and Gagne ©2005

Operating System Services

® One set of operating-system services provides functions that are
helpful to the user:

e User interface - Almost all operating systems have a user interface (Ul)

» Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

e Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

e 1/O operations - A running program may require /O, which may involve
a file or an 1/O device.

e File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories, create
and delete them, search them, list file Information, permission
management.

)

Operating System Concepts 2.4 Silberschatz, Galvin and Gagne ©2005

Operating System Services (Cont.)

B One set of operating-system services provides functions that are
helpful to the user (Cont):

e Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’'s and
programmer’s abilities to efficiently use the system

\

P~
Y

Operating System Concepts 25 Silberschatz, Galvin and Gagne ©2005

Operating System Services (Cont.)

m Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles,mainmemory,
and file storage) may have special allocation code, others (such as /O
devices) may have general request and release code.

e Accounting - To keep track of which users use how much and what kinds
of computer resources

e Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts
» If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.
Y
72N 3

/

Operating System Concepts 2.6 Silberschatz, Galvin and Gagne ©2005

£3
L

User Operating System Interface - CLI

CLI allows direct command entry
» Sometimes implemented in kernel, sometimes by systems
program
» Sometimes multiple flavors implemented — shells
» Primarily fetches a command from user and executes it
Sometimes commands built-in, sometimes just names of
programs

» If the latter, adding new features doesn’t require shell
modification

Y

2

’
Operating System Concepts 2.7 Silberschatz, Galvin and Gagne ©2005

User Operating System Interface - GUI

m User-friendly desktop metaphor interface
e Usually mouse, keyboard, and monitor
e Icons represent files, programs, actions, etc
e Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)
e Invented at Xerox PARC
® Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

e Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

)

2.8 Silberschatz, Galvin and Gagne ©2005

Operating System Concepts

System Calls

Programming interface to the services provided by the OS

m Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

B Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

® Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

Operating System Concepts

2.9

Silberschatz, Galvin and Gagne ©2005

Example of System Calls

m System call sequence to copy the contents of one file to another file

source file

destination file

\ 4

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

~

A

Operating System Concepts

2.10

'
/

Silberschatz, Galvin and Gagne ©2005

Example of Standard API

m Consider the ReadFile() function in the
m Win32 APl—a function for reading from a file

return value
BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
DWORD bytes To Read, | parameters
LPDWORD bytes Read,

LPOVERLAPPED ovl) ;

function name

m A description of the parameters passed to ReadFile()
e HANDLE file—the file to be read

e LPVOID buffer—a buffer where the data will be read into and written
from

DWORD bytesToRead—the number of bytes to be read into the buffer
LPDWORD bytesRead—the number of bytes read during the last read

e LPOVERLAPPED ovl—indicates if overlapped I/O is being used /@

Operating System Concepts 2.11 Silberschatz, Galvin and Gagne ©2005

System Call Implementation

m Typically, a number associated with each system call

e System-call interface maintains a table indexed according to
these numbers

m The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

® The caller need know nothing about how the system call is
implemented

e Just needs to obey API and understand what OS will do as a
result call

e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

R

=
/

Operating System Concepts 2.12 Silberschatz, Galvin and Gagne ©2005

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
L > - open ()
2 Implementation
» ofopen()
; system call
return

Operating System Concepts

2.13

Silberschatz, Galvin and Gagne ©2005

Standard C Library Example

m C program invoking printf() library call, which calls write() system call

Operating System Concepts

user

#include <stdio.h>
int main ()

{

— printf ("Greetings");

return o;

mode
kernel

standard C library

}_

mode
Qrite ()

write ()
system call

2.14

Silberschatz, Galvin and Gagne ©2005

System Call Parameter Passing

m Often, more information is required than simply identity of desired
system call

e Exact type and amount of information vary according to OS and
call

® Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 2.15

Parameter Passing via Table

X

register

X: parameters
for call

» use parameters code for
load address X — from table X system
system call 13 — > call 13

user program

operating system

R

'
/

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 2.16

System Programs

B System programs provide a convenient environment for program
development and execution. The can be divided into:

e File manipulation

e Status information

e File modification

e Programming language support
e Program loading and execution
e Communications

e Application programs

m Most users’ view of the operation system is defined by system
programs, not the actual system calls

N
7~ ;

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 2.17

System Programs

m Provide a convenient environment for program development and execution

e Some of them are simply user interfaces to system calls; others are
considerably more complex
®m File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories
m Status information
e Some ask the system for info - date, time, amount of available memory,
disk space, number of users
e Others provide detailed performance, logging, and debugging
information
e Typically, these programs format and print the output to the terminal or
other output devices

e Some systems implement a registry - used to store and retrieve
configuration information

)

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 2.18

System Programs (cont'd)

® File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

® Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

® Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

® Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

e Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

Operating System Concepts 2.19 Silberschatz, Galvin and Gagne ©2005

End of Chapter 2

