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Basic Concepts

Maximum CPU utilization obtained with multiprogramming

m CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/0 wait

®  CPU burst distribution
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Alternating Sequence of CPU And I/O Bursts

load store
add store CPU burs
read from file

wait for [/O 1/0 burst

:

store increment

index CPU burs
write to file

wait for I/O } 1/0 burst
load store
add store CPU burs

read from file

wait for I/O 1/0 burst
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Histogram of CPU-burst Times
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CPU Scheduler

m  Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

m  CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
®  Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive
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Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to restart
that program

m Dispatch latency — time it takes for the dispatcher to stop one
process and start another running
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Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

®  Throughput — # of processes that complete their execution
per time unit

®  Turnaround time — amount of time to execute a particular
process

®  Waiting time — amount of time a process has been waiting
in the ready queue

m Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)
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Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time
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First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
B3 3
Py 3

® Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
B Waiting time for P, =0; P, =24; P;=27
Average waiting time: (0 + 24 + 27)/3 = 17
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,Ps;, P,
® The Gantt chart for the schedule is:

P, Py Py

0 3 6 30
Waiting time for P, = 6; P, =0.P;=3
Average waiting time: (6 +0+ 3)/3=3
Much better than previous case

Convoy effect short process behind long process
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Shortest-Job-First (SJR) Scheduling
m  Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time
m Two schemes:
e nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst
e preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)
m SJF is optimal — gives minimum average waiting time for a given
set of processes
)
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® Average waitingtime=(0+6+3+7)/4 =4

Operating System Concepts

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7

s 2.0 4

Pg 4.0 1

Pa 5.0 4

P2 P, P, Pa

—— % — ——

0 3 7 8 12 16
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Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P2 2.0 4
Pa 4.0 1
Pa 5.0 4
®  SJF (preemptive)
Pl P2 P3 P2 P4 Pl
| | [ [
1 1 ‘ 1 T 1
2 4 5 7 11 16

m Average waiting time=(9+1+0 +2)/4 =3
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5.14
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Determining Length of Next CPU Burst

® Can only estimate the length

® Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual lenght of n" CPU burst

2. 1,,, =predicted value for the next CPU burst
3.00=<a<1

4. Define: 1, =at, +(1-a)r,.
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Prediction of the Length of the Next CPU Burst

CPU burst (t) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12
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Examples of Exponential Averaging

® a=0
® Ty =T,
e Recent history does not count
" a=1
°* T =at
e Only the actual last CPU burst counts
m |f we expand the formula, we get:
T=0at+l-o)at, -1+ ..
Hl-a)at, ;+ ..
+(1-a)*t,

m Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor
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Priority Scheduling

A priority number (integer) is associated with each process

m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e nonpreemptive

m  SJF is a priority scheduling where priority is the predicted next CPU
burst time

Problem = Starvation — low priority processes may never execute

m Solution = Aging — as time progresses increase the priority of the
process
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Round Robin (RR)

m  Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m |f there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)qg time units.

m Performance
e qlarge = FIFO

e g small = g must be large with respect to context switch,
otherwise overhead is too high
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Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P 24

IS

B The Gantt chart is:

PP, | Py | PP | PP, | P | P, | P,

0 20 37 57 77 97 117 121 134 154 162

m  Typically, higher average turnaround than SJF, but better response
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Multilevel Queue

m Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

® Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS

® Scheduling must be done between the queues

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

e 20% to background in FCFS
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Multilevel Queue Scheduling

highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

[
L

lowest priority
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Multiple-Processor Scheduling

m CPU scheduling more complex when multiple CPUs are
available

Homogeneous processors within a multiprocessor
Load sharing

Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing
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Real-Time Scheduling

m Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

m  Soft real-time computing — requires that critical
processes receive priority over less fortunate ones
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End of Chapter 5
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