Chapter 5. CPU Scheduling
QIBBDDIGIBB DI IIBPIIGIIBIIIG

Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling

Thread Scheduling

Operating Systems Examples
Java Thread Scheduling

Algorithm Evaluation

Operating System Concepts 5.2 Silberschatz, Galvin and Gagne ©2005

Basic Concepts

Maximum CPU utilization obtained with multiprogramming

m CPU-I/O Burst Cycle — Process execution consists of a cycle of
CPU execution and I/0 wait

® CPU burst distribution

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.3

Alternating Sequence of CPU And I/O Bursts

load store
add store CPU burs
read from file

wait for [/O 1/0 burst

:

store increment

index CPU burs
write to file

wait for I/O } 1/0 burst
load store
add store CPU burs

read from file

wait for I/O 1/0 burst

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.4

Histogram of CPU-burst Times

160 [
140
120
& 100
c
o
S
E,’ 80
60
40
20
1 L 1 Il
16 24 32 40
burst duration (milliseconds)
)
A
Operating System Concepts 55 Silberschatz, Galvin and Gagne ©2005

CPU Scheduler

m Selects from among the processes in memory that are ready to
execute, and allocates the CPU to one of them

m CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
® Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

L

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 5.6

Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to restart
that program

m Dispatch latency — time it takes for the dispatcher to stop one
process and start another running

R

7

/
Operating System Concepts 5.7 Silberschatz, Galvin and Gagne ©2005

Scheduling Criteria

CPU utilization — keep the CPU as busy as possible

® Throughput — # of processes that complete their execution
per time unit

® Turnaround time — amount of time to execute a particular
process

® Waiting time — amount of time a process has been waiting
in the ready queue

m Response time — amount of time it takes from when a
request was submitted until the first response is produced,
not output (for time-sharing environment)

)

=
/

Operating System Concepts 5.8 Silberschatz, Galvin and Gagne ©2005

Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time

Operating System Concepts 5.9 Silberschatz, Galvin and Gagne ©2005

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
B3 3
Py 3

® Suppose that the processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
B Waiting time for P, =0; P, =24; P;=27
Average waiting time: (0 + 24 + 27)/3 = 17

'
/

Operating System Concepts 5.10 Silberschatz, Galvin and Gagne ©2005

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P,,Ps;, P,
® The Gantt chart for the schedule is:

P, Py Py

0 3 6 30
Waiting time for P, = 6; P, =0.P;=3
Average waiting time: (6 +0+ 3)/3=3
Much better than previous case

Convoy effect short process behind long process

TR
/’\ ;
Operating System Concepts 5.11 Silberschatz, Galvin and Gagne ©2005
Shortest-Job-First (SJR) Scheduling
m Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time
m Two schemes:
e nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst
e preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)
m SJF is optimal — gives minimum average waiting time for a given
set of processes
)
Operating System Concepts 5.12 Silberschatz, Galvin and’;Bagne ©2;)OS

® Average waitingtime=(0+6+3+7)/4 =4

Operating System Concepts

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7

s 2.0 4

Pg 4.0 1

Pa 5.0 4

P2 P, P, Pa

—— % — ——

0 3 7 8 12 16

5.13

Silberschatz, Galvin and Gagne ©2005

Example of Preemptive SJF

Process Arrival Time Burst Time
P, 0.0 7
P2 2.0 4
Pa 4.0 1
Pa 5.0 4
® SJF (preemptive)
Pl P2 P3 P2 P4 Pl
| | [[
1 1 ‘ 1 T 1
2 4 5 7 11 16

m Average waiting time=(9+1+0 +2)/4 =3

Operating System Concepts

5.14

Silberschatz, Galvin and Gagne ©2005

'
/

Determining Length of Next CPU Burst

® Can only estimate the length

® Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual lenght of n" CPU burst

2. 1,,, =predicted value for the next CPU burst
3.00=<a<1

4. Define: 1, =at, +(1-a)r,.

Operating System Concepts 5.15 Silberschatz, Galvin and Gagne ©2005

Prediction of the Length of the Next CPU Burst

CPU burst (t) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

Operating System Concepts 5.16 Silberschatz, Galvin and Gagne ©2005

Examples of Exponential Averaging

® a=0
® Ty =T,
e Recent history does not count
" a=1
°* T =at
e Only the actual last CPU burst counts
m |f we expand the formula, we get:
T=0at+l-o)at, -1+ ..
Hl-a)at, ;+ ..
+(1-a)*t,

m Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor

Operating System Concepts 5.17 Silberschatz, Galvin and Gagne ©2005

Priority Scheduling

A priority number (integer) is associated with each process

m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e nonpreemptive

m SJF is a priority scheduling where priority is the predicted next CPU
burst time

Problem = Starvation — low priority processes may never execute

m Solution = Aging — as time progresses increase the priority of the
process

R

=
Y

Operating System Concepts 5.18 Silberschatz, Galvin and Gagne ©2005

Round Robin (RR)

m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

m |f there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)qg time units.

m Performance
e qlarge = FIFO

e g small = g must be large with respect to context switch,
otherwise overhead is too high

R

7

/
Operating System Concepts 5.19 Silberschatz, Galvin and Gagne ©2005

Example of RR with Time Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P 24

IS

B The Gantt chart is:

PP, | Py | PP | PP, | P | P, | P,

0 20 37 57 77 97 117 121 134 154 162

m Typically, higher average turnaround than SJF, but better response

)

=
/

Operating System Concepts 5.20 Silberschatz, Galvin and Gagne ©2005

10

Multilevel Queue

m Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

® Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS

® Scheduling must be done between the queues

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

e 20% to background in FCFS

Operating System Concepts 5.21 Silberschatz, Galvin and Gagne ©2005

Multilevel Queue Scheduling

highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

[
L

lowest priority

'

Operating System Concepts 5.22 Silberschatz, Galvin and Gagne ©2005

11

Multiple-Processor Scheduling

m CPU scheduling more complex when multiple CPUs are
available

Homogeneous processors within a multiprocessor
Load sharing

Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the need
for data sharing

Operating System Concepts 5.23 Silberschatz, Galvin and Gagne ©2005

Real-Time Scheduling

m Hard real-time systems — required to complete a
critical task within a guaranteed amount of time

m Soft real-time computing — requires that critical
processes receive priority over less fortunate ones

R

'
/

Operating System Concepts 5.24 Silberschatz, Galvin and Gagne ©2005

12

End of Chapter 5

13

