
1

Chapter 6: Process SynchronizationChapter 6: Process Synchronization

6.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Module 6: Process SynchronizationModule 6: Process Synchronization

� Background
� The Critical-Section Problem
� Peterson’s Solution
� Synchronization Hardware
� Semaphores
� Classic Problems of Synchronization
� Monitors
� Synchronization Examples
� Atomic Transactions

2

6.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

BackgroundBackground

� Concurrent access to shared data may result in data
inconsistency

� Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

� Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to 0. It is
incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

6.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Producer Producer

while (true)

/* produce an item and put in nextProduced

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

3

6.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ConsumerConsumer

while (1)

{

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed

}

6.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Race ConditionRace Condition

� count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

� count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

� Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

4

6.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Solution to CriticalSolution to Critical--Section ProblemSection Problem

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical
section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

� Assume that each process executes at a nonzero speed

� No assumption concerning relative speed of the N processes

6.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Synchronization HardwareSynchronization Hardware

� Many systems provide hardware support for critical section
code

� Uniprocessors – could disable interrupts

� Currently running code would execute without
preemption

� Generally too inefficient on multiprocessor systems

� Operating systems using this not broadly scalable

� Modern machines provide special atomic hardware
instructions

� Atomic = non-interruptable

� Either test memory word and set value

� Or swap contents of two memory words

5

6.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TestAndndSetTestAndndSet Instruction Instruction

� Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

6.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Swap InstructionSwap Instruction

� Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

6

6.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SemaphoreSemaphore

� Synchronization tool that does not require busy waiting

� Semaphore S – integer variable

� Two standard operations modify S: wait() and signal()

� Originally called P() and V()
� Less complicated

� Can only be accessed via two indivisible (atomic) operations

� wait (S) {

while S <= 0

; // no-op

S--;

}

� signal (S) {

S++;

}

6.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Semaphore as General Synchronization ToolSemaphore as General Synchronization Tool

� Counting semaphore – integer value can range over an
unrestricted domain

� Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement

� Also known as mutex locks

� Can implement a counting semaphore S as a binary semaphore

� Provides mutual exclusion

� Semaphore S; // initialized to 1

� wait (S);

Critical Section

signal (S);

7

6.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock and StarvationDeadlock and Starvation

� Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

� Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

� Starvation – indefinite blocking. A process may never be removed
from the semaphore queue in which it is suspended.

6.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Problems with SemaphoresProblems with Semaphores

� Correct use of semaphore operations:

� signal (mutex) …. wait (mutex)

� wait (mutex) … wait (mutex)

� Omitting of wait (mutex) or signal (mutex) (or both)

8

6.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

MonitorsMonitors

� A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

� Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

6.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Schematic view of a MonitorSchematic view of a Monitor

9

End of Chapter 6End of Chapter 6

