
1

Chapter 7: DeadlocksChapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 7: DeadlocksChapter 7: Deadlocks

� The Deadlock Problem

� System Model

� Deadlock Characterization

� Methods for Handling Deadlocks

� Deadlock Prevention

� Deadlock Avoidance

� Deadlock Detection

� Recovery from Deadlock

2

7.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

The Deadlock ProblemThe Deadlock Problem

� A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

� Example

� System has 2 tape drives.

� P1 and P2 each hold one tape drive and each needs another
one.

� Example

� semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

7.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Bridge Crossing ExampleBridge Crossing Example

� Traffic only in one direction.

� Each section of a bridge can be viewed as a resource.

� If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback).

� Several cars may have to be backed up if a deadlock
occurs.

� Starvation is possible.

3

7.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

System ModelSystem Model

� Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

� Each resource type Ri has Wi instances.

� Each process utilizes a resource as follows:

� request

� use

� release

7.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock CharacterizationDeadlock Characterization

� Mutual exclusion: only one process at a time can use a
resource.

� Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

� No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task.

� Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

4

7.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ResourceResource--Allocation GraphAllocation Graph

� V is partitioned into two types:

� P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system.

� R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

� request edge – directed edge P1 → Rj

� assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

7.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

ResourceResource--Allocation Graph (Cont.)Allocation Graph (Cont.)

� Process

� Resource Type with 4 instances

� Pi requests instance of Rj

� Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

5

7.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of a Resource Allocation GraphExample of a Resource Allocation Graph

7.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A DeadlockResource Allocation Graph With A Deadlock

6

7.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Resource Allocation Graph With A Cycle But No DeadlockResource Allocation Graph With A Cycle But No Deadlock

7.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Basic FactsBasic Facts

� If graph contains no cycles � no deadlock.

� If graph contains a cycle �

� if only one instance per resource type, then deadlock.

� if several instances per resource type, possibility of
deadlock.

7

7.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Methods for Handling DeadlocksMethods for Handling Deadlocks

� Ensure that the system will never enter a deadlock state.

� Allow the system to enter a deadlock state and then
recover.

� Ignore the problem and pretend that deadlocks never occur
in the system; used by most operating systems, including
UNIX.

7.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock PreventionDeadlock Prevention

� Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

� Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources.

� Require process to request and be allocated all its
resources before it begins execution, or allow process
to request resources only when the process has none.

� Low resource utilization; starvation possible.

Restrain the ways request can be made.

8

7.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock Prevention (Cont.)Deadlock Prevention (Cont.)

� No Preemption –

� If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released.

� Preempted resources are added to the list of resources
for which the process is waiting.

� Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

� Circular Wait – impose a total ordering of all resource types,
and require that each process requests resources in an
increasing order of enumeration.

7.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock AvoidanceDeadlock Avoidance

� Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need.

� The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition.

� Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Requires that the system has some additional a priori information
available.

9

7.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Deadlock DetectionDeadlock Detection

� Allow system to enter deadlock state

� Detection algorithm

� Recovery scheme

7.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery from Deadlock: Process TerminationRecovery from Deadlock: Process Termination

� Abort all deadlocked processes.

� Abort one process at a time until the deadlock cycle is eliminated.

� In which order should we choose to abort?

� Priority of the process.

� How long process has computed, and how much longer to
completion.

� Resources the process has used.

� Resources process needs to complete.

� How many processes will need to be terminated.

� Is process interactive or batch?

10

7.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Recovery from Deadlock: Resource PreemptionRecovery from Deadlock: Resource Preemption

� Selecting a victim – minimize cost.

� Rollback – return to some safe state, restart process for that state.

� Starvation – same process may always be picked as victim,
include number of rollback in cost factor.

End of Chapter 7End of Chapter 7

